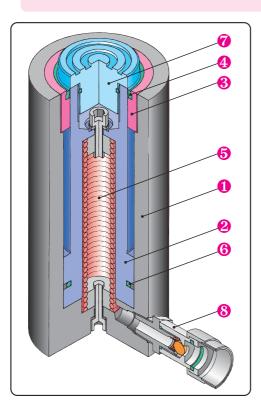


EUROPRESS Гидравлические цилиндры

Отличительные характеристики


Корпус цилиндра

Программа производства компонентов, выдерживающих давление 700 бар, опирается на новые технологии и долгий опыт производства гидравилических систем, работающих при высоком давлении

Идеальное сочетание материалов и антикоррозионная обработка поверхностей делает продукцию ЕРР подходящей для работы в суровых условиях.

Кроме того, цилиндры Е.Р.Р. могут выдерживать смещенные и боковые нагрузки до 8% от номинальной мощности.

Большинство наших моделей соответствуют требованиям ANSI (Американский нац. институт стандартов), стандарт у В30.1.

Корпус цилиндра, поршень и стопорное кольцо выполнены из высококачественной закаленной стали и упрочнены азотированием для повышения износостойкости и коррозионной стойкости; обладают высокой устойчивостью к атмосферным воздействиям и даже к воздействию морской воды и агрессивных сред.

Уплотнительное кольцо 4

Уплотнительное кольцо предотвращает загрязнение и повышает долговечность цилиндра

Пружина возврата

Пружина обеспечивает быстрый возврат поршня вне зависимости от положения цилиндра.

Уплотнитель 6

Компактный уплотнитель характеризуется хорошей износостойкостью и стойкостью к выдавливанию.

Наконечник

Наконечник выполнен из высокопрочной и азотированной стали, что позволяет предотвратить деформацию штока поршня

Штуцер 8

Штуцер монтируется на все цилиндры (за исключением COD цилиндров), снабжен пылезащитным колпачком.

NITREG - The Nitreg ONC ® процесс - это процесс термохимической обработки стали, который начинается с обработки жидким азотом с последующим оксидированием, вызывающим изменение химического состава стали. Это изменение делает сталь исключительно твердой и стойкой к коррозии. Последнее свойство еще более усиливается применением специального масла, которое покрывает обработанные поверхности (тесты, проводимые в агрессивных задымленных и соленых средах, показали устойчивость к коррозии в течение 300 часов в соответстиви со стандартом ASTM B117).

Обработанные таким способом продукты подходят для работы в условиях высокого риска коррозии и механических повреждений. Продукция EUROPRESS уникальная в своем роде, поскольку мы уже много лет применяем этот тип обработки на наших заводах.

Черный цвет, выбранный EUROPRESS для свое продукции, является результатом последнего этапа обработк, он стал символом нашей работы в области исследований качества.

EUROPRESS Cylinders



Как выбрать цилиндр

Важная информация для тех, кто выбирает цилиндры. Она включает в себя:

- Усилие сжатия
- Ход
 - Мин. высота

И дополнительные данные:

- Требуемый объем масла
- Скорость работы

Существует три основных типа цилиндров: с гравитационным, пружинным и гидравлическим возвратом,

Гравитационный возврат, при котором поршень возвращается под действием груза или другой внешней силы. Минимальное усилие, необходимое для возврата поршня, составляет примерно 0,2% номинального усилия сжатия. Эти цилиндры представляют

собой самый экономичный вариант в случаях, когда не требуется быстрый возврат поршня после опущения груза. К этой группе относятся модели CGG, CGR, CGS.

Пружинный возврат, при котором поршень возвращается при помощи пружины, расположенной внутри цилиндра. Этот тип цилиндров предлага-

ется при необходимости быстрого снятия цилиндра после опущения груза. К этой группе относятся модели СМС, СМF, СМI, СМL, СМР, СМТ

Двусторонние: поршень возвращается гидравлическим способом путем закачивания масла в камеру цилиндра. Этот тип цилиндров идеален для использования в производстве, где требуется короткий рабочий цикл. При использовании в подъемных механизмах опущение груза контролируется при помощи одностороннего распределительного и обратного клапанов.Возможна установка

меньшего значения давления. К этой группе относятся модели COF, COI, COS.

При необходимости приложения усилия толкания мы рекомендуем цилиндры серии COD. Цилиндры поставляются с резьбой и в комплекте с соединительными элементами. Их можно использовать в условиях, когда поршень испытывает максимальное рабочее давление.

Пример: цилиндр

	С	#	#	###	#	###	#
		Тип		Усилие толкания	<i>№</i> стандартный	V	F=с монтажными отверстиями на опоре
Ì	(илиндр	возврата	серия	CONTINE TOTIKAHUN	, ¹ <i>Р</i> = плунжерный	Ход, мм	Т=с крышкой

CMF20N100

Цилиндр с пружинным возвратом штока, усилие 20 т, ход - 100 мм, модель N

CGG200N250FT

Цилиндр с гравитационным возвратом штока, защитным кольцом, усилие 200 т, модель N, ход - 250 мм, монтажные отверстия в опоре, встроенная крышка.

Гидравлические цилиндры

Гидравлические цилиндры, номенклатура

Односторонние цилиндры с гравитационным возвратом штока

CGG *ctp.10*

серия **CGR** стр. 14

CGS *ctp.16*

Односторонние цилиндры с пружинным возвратом штока

СМС *стр.20* **СМL** *стр.26*

Серия **СМF** *стр.22* **СМР** *стр.28*

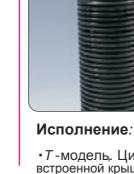
СМІ *стр.24* **СМТ** *стр.30*

Двусторонние цилиндры с гидравлическим возвратом штока

СОD *стр.32*

Серия **COF** *стр.34* **COS** *стр.38*

СОІ стр.36



CGG

Мощные цилиндры со стопорной гайкой, гравитационный возврат штока

Комплектующие:

 Съемная крышка ZTT помогает снизить возможные боковые нагрузки.

- •Т-модель, Цилиндр со встроенной крышкой.
- F модель. Цилиндр с монтажными отверстиями в опоре для крепления
- N модель, (как правило, с усилием от 50 т). Цилиндры со стопорной гайкой. Эта модель соответствует стандарту ANSI B30.1
- М модель. Цилиндр с пружинным возвратом штока. Модель подходит для цилиндров N - моделей с усилием до 150 г (T.e. CMG50N100)

XAPAKTEPUCTUKU

Эти цилиндры предназначены для длительной непрерывной работы.

Стопорная гайка навинчивается на гильзу цилиндра для механической фиксации груза, что обеспечивает безопасность работы.

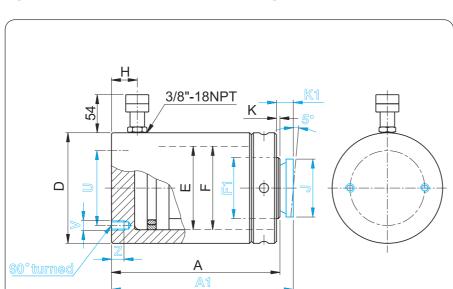
Цилиндры CGG имеют концентрические канавки, выполненные на конце штока для усиления захвата, модели с усилием больше 30 т снабжены подъемными проушинами для удобства транспортировки. Цилиндры с усилием 50 т и больше являются плунжерными и имеют механизм предотвращения увеличения хода поршня. Поршень имеет окрашенный сегмент длиной 10 мм, который становится виден, когда поршень совершает максимальный ход. Все модели могут выдерживать внецентровые нагрузки до 8% от рабочих параметров цилиндра.

ОБЛАСТЬ ПРИМЕНЕНИЯ

Цилиндры подходят для использования в строительстве, например, при ремонте и строительстве мостов, фундаментов, подведения опор и т.д.

Антикоррозионная обработка цилиндров, которая производится на заводе, делает цилиндры пригодными для работы в тяжелых условиях и агрессивных средах.

Компактные цилиндры CGR лучше всего подходят для работы в условиях ограниченного рабочего места


При работе с цилиндрами моделей Р без стопорной гайки очень важно, чтобы рабочий мог отслеживать момент появления окрашенной части поршня, сигнализирующей о том, что поршень совершил полный ход.

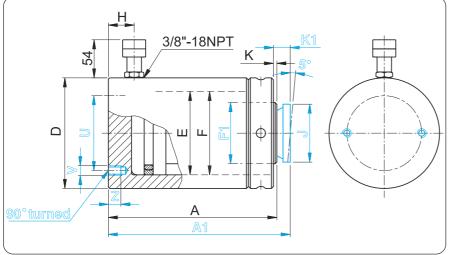
CGG

Мощные цилиндры со стопорной гайкой, гравитационный возврат штока

ход: **25-300 мм**

Макс. рабочее давление: 700бар

Цилиндры с нестандартной мощностью и длиной хода штока посталяются на заказ


Усилие толкания	Ход	Объем масла	Модель	Мин. высота	Мин. высота с крышкой	Внешний диаметр	Диаметр поршня	Диаметр модели со штоком без огриничи- теля хода	Диаметр модели со штоком с ограни- чителем хода	Высота с крышкой	Диаметр встроен- ной крышки	Выступающая часть штока	Выступающая часть штока с крышкой	Монтажные отверстия	Монтажные отверстия, глубина	Bec
т*/кН	мм	СМ ³		Α	A1	D	Е	F	Размер <i>F</i> 1	ы, м <i>Н</i>	M J	K	K1	U	V/Z	КГ
00/00	2 100	11	0000001400					-					<i>V V</i>		•	0 11
30/30		44. 70	CGG30N100	189	193	102	75	-	Tr 65x6	19	5:	5 1) 6	5 2 x M10 /1	
50/496	100	70. 106	CGG50P100 CGG50P150	208 258	213 263	127	95	Tr 95x6	Tr 85x6	22	68	1	6	95	2 x M12 / 1	19 15 23
	100	132	CGG100P10		243											38
100/92	29150	199	CGG100P15		293	175	130	Tr 130x1	0 Tr 110x	10 2	2 88	2	9	130	2 x M12 / 1	1 7 45
	25	503	CGG150P25		193											47
	50	100	CGG150P50		218											52
450 (4.4)	100	20:	CGG150P10	0 259	268	213	160	T 400		40 0			40	400	4 140 /	66
150/140	150	30:	CGG150P15	0 309	318	213	160	Ir 160x1	0 Tr 130x	10 30) 11	8 3	12	130	4 x M12 /	74
	200	402	CGG150P20	0 359	368											85
	250	502	CGG150P25	0 409	418											95
	25	709	CGG200P25	205	214											75
	50	141	CGG200P50	230	239											84
	100	283	CGG200P10	0 280	289										4 × M4C	100
200/19	84150	425	CGG200P15	0 330	339	252	190	Tr 190x1	0 Tr 165	10 3	2 14	8 3	12	140	4 x M16	116
	200	567	CGG200P20	0 380	389										/ 20	133
	250	708	CGG200P25		439											149
	300	850	CGG200P30	0 480	489											165

^{*}номинальное значение, см. кН

CGG

Мощные цилиндры со стопорной гайкой гидравлический возврат штока

Усилие: **30-500 т**

ход: **25-300 мм**

Макс. раб. давление: **700бар**

Цилиндры с нестандартными характеристиками и ходом штока поршня поставляются на заказ

													2			
Усилие толкания	Ход	Объем масла	Модель	Мин. высота	Мин. высота с крышкой	Внешний диаметр	Диаметр поршня	Диаметр модели со штоком без оганичи- теля хода	Диаметр модели со штоком с ограничи- телем хода	Высота штуцера	Диаметр встро- енной крышки	Выступающая часть штока	Выступающая част штока с крышкой	Монтажные отверстия для штуцера	Монтажные отвер- стия, глубина	Bec
								Р	азмеры	MM						
т*/кН	ММ	CM 3		Α	A1	D	Ε	F	F1	Н	J	Κ	K1	U	V/Z	KΓ
	25	866	CGG250P25	224	233											95
	50	1732	CGG250P50	249	258											104
	100	346	CGG250P10	299	308										4 x M16	127
250/	150	519	CGG250P15		358	280	210	Tr 210x10	Tr 175x10	34	158	3	12	150	/20	140
2424	200	692	CGG250P20		408										,	158
	250	865	CGG250P25		458											176
	300	1039	CGG250P30		508											194
	25	1039	CGG300P25	240	249											126
	50	207	CGG300P50	265	274											137
300/	100	415	CGG300P10		324										4 x M16	160
2908	150	623	CGG300P15		374	305	230	Tr 230x10	Tr 195x10	38	158	3	12	170	/20	183
	200	831	CGG300P20	-	424											205
	250	1038	CGG300P25		474											228
	300	1246	CGG300P30		524											251
	25	122	CGG350P25	250	262											149
	50	2454	CGG350P50	275	287										4 x M16	162
350/	100	490	CGG350P10		337	332 37	250	Tr 250x10	Tr 215x10	12	196	3	15	200	/20	188
3436	150	736	CGG350P15		387										/ 20	215
	200	981	CGG350P20		437											241
	250	1227	CGG350P25		487											267
	300	1472	CGG350P30	525	537											293

^{*}номинальное значение, см. кН

Мощные цлиндры со стопорной гайкой, гравитационный возврат штока

Технические характеристики

		r	•	•									ЖOЎ			
Усилие толкания	Ход	Объем масла	Модель	Мин. высота	Мин. высота с крышкой	Внешний диаметр	Диаметр поршня	Äèàlàòð іїääёё со штоком без ограничи- теля хода	Äèàlåòð Iläåëè со штоком с ограничи- телем хода	Высота штуцера	Диаметр встроен. крышки	Выступающая часть штока	Выступающая часть штока с крышкой	Монтажные отвер- стия для штуцер <i>а</i>	Монтажные отвер- стия, глубина	Bec
ò*/ êĺ	ນ ສາວ	3							Размер	ы, м	М					
0 / 61	11 1113	3		Α	A1	D	Ε	F	F1	Н	J	K	K1	U	V/Z	КГ
	25	143	CGG400P25	260	272											187
	50	286	CGG400P50	285												203
	100	572	CGG400P10	0 <i>335</i>	247			Tr 270x10								234
400/40	0 8 50	858	CGG400P15		397	356	270		Tr 235x1	0 42	196	3	15	230	4 x M16 /20	266
	200	114	CGG400P20		447											298
	250	143	CGG400P25		497											330
	300	171	CGG400P30		547											362
	25	176	CGG500P25	275	287											257
	50	353	CGG500P50	300	312											278
500 (40	100	706			362	206	300	Tr 300x10	Tr 260x1	0 50	196	3	15	250	1 v M16 /0/	319
500/49		106	CGG500P15 CGG500P20		412		300	11 300X10	11 ZOUX 1	0 50	190	3	15	230	4 x M16 /20	
	<i>200 250</i>	141 176	CGG500P25		462 512											402 443
	300	212	CGG500P30		562											484
	300	212	CGG5001*30	000	302								<u> </u>			404

^{*}номинальное значение, см. кН

Комплектующие: крышки ZTT

Обозначение модели

C#G	30	N	###	#
ряд <i>G</i>	V	_ N=c ограничителем хода	Ход в мм	F = с монтажными отверстиями в опоре
ряд М	Усилие толкания,	Р= без ограничителя хода	AOA B MM	Т = со встроенной съемной крыййкой

^{**}Цилиндры с усилием меньше100 т рекомендуется заказывать малыми партиями.

CGR

Компактные цилиндры со стопорной гайкой, гравитационный возврат

СТАНДАРТ:

 Встроенная крышка снижает воздействие эксцентричных нагрузок.

Цилиндры CGR предназначены для работы в условиях ограниченного места и максимальных нагрузок даже без плиты распределения давления. В любом случае рекомендуется располагать плиту под цилиндром и над крышкой для распределения нагрузки, т.к. устойччивость суппорта не

соответствует значениям давления, приведенным в таблице.

Невыполнение этого требования может привести к повреждению цилиндра при подъеме грузов.

В процессе подъема грузов оператор должен отслеживать момент выступания окрашенной части поршня во время выполнения хода.

ХАРАКТЕРИСТИКИ

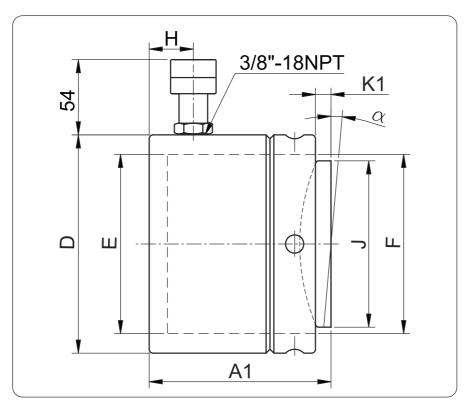
Цилиндры с гладкой стопорной гайкой имеют специальное отверстие для ограничения хода поршня. Поршень имеет окрашенный сегмент длиной 10 мм, который появлется перед тем, как поршень достигает максимального хода. Эта модель не соответствует стандарту ANSI B30.1.

Эти цилиндры подходят для работы в условиях, когда груз нужно удерживать в поднятом положении в течение длительного времени. Груз можно поддерживать при помощи стопорной гайки, которая позволяет сбрасывать давление и отсоединять насосы и шланги на время, пока не потребуется опустить груз.

Все цилиндры поставляются со встроенными крышками и проушинами для удобства транспортировки.

ОБЛАСТЬ ПРИМЕНЕНИЯ

Цилиндры CGR предназначены для применения в строительстве и обслуживании мостов, виадуков, строительных площадок в условиях ограничения рабочего места.


Обработка цилиндров против азотизации придает им прекрасную коррозионную стойкость и делает их поригодными для работы в агрессивных средах.

CGR

Цилиндры малой высоты со стопорной гайкой, гидравлический возврат штока

Усилие: **110-900 T**

ход: 50 мм

Макс. раб. давление: 700 бар

Цилиндры с нестандартными характеристикам и ходом штока поршня поставляются на заказ

110/1078 770 46 113 CGR110N50 137 178 140 Tr 140x10 19 118 8 5° 2 2 160/1589 1135 45 102 CGR160N50 148 218 170 Tr 170x10 19 148 9 5° 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Усилие толкания	Ход	Объем масла	Давление на днище цилиндра	Внутреннее давление на крышку цилиндр <i>а</i>	Модель	Мин. высота	Внешний диаметр	Диаметр поршня	Диаметр штока	Высота штуцера	Диаметр крышки	Выступающая часть штока с крышкой	Угол наклона крышки	Bec
110/1078 770 46 113 CGR110N50 137 178 140 Tr 140x10 19 118 8 5° 2 1 160/1589 1135 45 102 CGR160N50 148 218 170 Tr 170x10 19 148 9 5° 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<i>t</i> т*/ кН	*/ кН мм см³ МПа МПа						D	F				K1	α	кг
200/1985	110/107	0/1078 770 46 113 CGR110N5										26			
250/2424	160/158	39	1135	45	102	CGR160N50	148	218	170	Tr 170x10	19	148	9	<i>5</i> °	42
50 2863 44 89 CGR400N50 178 347 270 Tr 270x10 27 248 11 4° 1 500/4948 3534 44 81 CGR500N50 192 385 300 Tr 300x10 30 285 10 3° 1 700/6735 4811 44 85 CGR700N50 200 445 350 Tr 350x10 30 325 10 3° 2	200/198	35	1418	45	87	CGR200N50	154	242	190	Tr 190x10	20	176	10	<i>5</i> °	54
400/4008 2863 44 89 CGR400N50 178 347 270 Tr 270x10 27 248 11 4° 1 500/4948 3534 44 81 CGR500N50 192 385 300 Tr 300x10 30 285 10 3° 1 700/6735 4811 44 85 CGR700N50 200 445 350 Tr 350x10 30 325 10 3° 2	250/242	24	1732	45	84	CGR250N50	159	268	210	Tr 210x10	22	196	11	<i>5</i> °	68
700/6735 4811 44 85 CGR700N50 200 445 350 Tr 350x10 30 325 10 3° 2	400/400		2863	44	89	CGR400N50	178	347	270	Tr 270x10	27	248	11	4°	128
	500/494	18	3534	44	81	CGR500N50	192	385	300	Tr 300x10	30	285	10	3°	171
900/8796 6283 47 83 CGR900N50 216 495 400 Tr 400x10 30 375 12 3° 3	700/673	35	4811	44	85	CGR700N50	200	445	350	Tr 350x10	30	325	10	3°	238
	900/879	96	6283	47	83	CGR900N50	216	495	400	Tr 400x10	30	375	12	3°	315

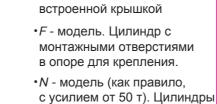
^{*}номинальное значение, см. значение в кН

CGS

Мощные цилиндры, гравитационный возврат штока

ХАРАКТЕРИСТИКИ

Цилиндры *CGG* имеют концентрические канавки, выполненные на конце штока для усиления захвата, модели с усилием больше 30 т снабжены подъемными проушинами для удобства транспортировки. Цилиндры с усилием 50 т и больше являются плунжерными и имеют механизм предотвращения увеличения хода поршня. Поршень имеет окрашенный сегмент длиной 10 мм, который стаовится виден, когда поршень совершает максимальный ход. Все модели могут выдерживать эксцентричные нагрузки до 8% от рабочих параметров цилиндра.


СФЕРА ПРИМЕНЕНИЯ

Исключительно прочные и надежные цилиндры подходят для использования в строительстве и судостроении, подъема и опускания тяжелых грузов. Антикоррозионное покрытие цилиндров делает их пригодными для работы в тяжелых условиях и агрессивных средах.

КОМПЛЕКТУЮЩИЕ:

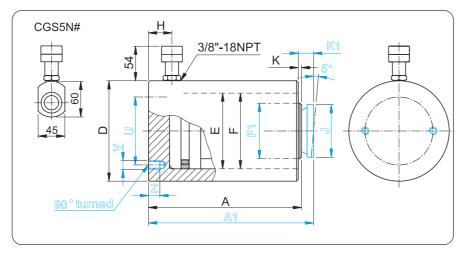
• Съемная крышка *ZTT* помогает снизить возможные боковые нагрузки.

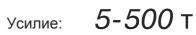
МОДЕЛИ:

Эта модель соответствует стандарту ANSI. B30.1

со стопорной гайкой.

•Т -модель. Цилиндр со


При работе с цилиндрами модели Р без стопорной гайки очень важно, чтобы рабочий мог отслеживать момент появления окрашенной части поршня, согнилизирующей о том, что поршень совершил полный ход.



CGS

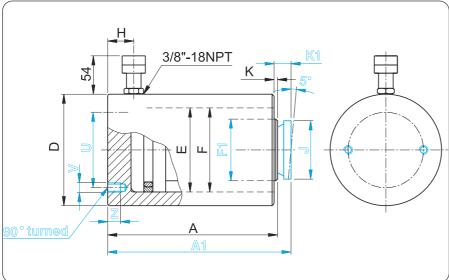
Мощные цилиндры с гравитационным возвратом штока

ход: 15-300 мм

Макс. раб. давление: 700 бар

Ž

Цилиндры с нестандартными характеристиками и ходом штока поршня поставляются на заказ


ания виетр ока и со вии- ока и со ока и со ока осо осо осо осо осо осо осо ос	<u>a</u> 6 a
Усилие толкания Ход Объем масла Мин. высота с крышкой Внешний диаметр Диаметр штока Диаметр модели со штоком без ограни- чителя хода Диаметр модели со штоком с ограни- чителя хода Высота штуцера Диаметр встро- енной крышки Выступающая часть штока Выступающая часть штока	часть штока с крышко Монтажные отвер- стия для штуцера- Монтажные отверстия, глубина Вес
т*/кН мм см³ — Размеры, мм — А А1 D E F № Н J K №	g U V/Z Kr
15 11 CGS5N15 45 -	1,0
5/49,5 50 35 CGS5N50 80 - 60/45 30 - 24 19 - 1	1,6
80 56 CGS5N80 120 -	2,4
10/11 25 40 CGS10N25 72 75 75 45 - 35 19 34 1	4 25 2 x M8 / 8 2,8
70/11 50 80 CGS10N50 97 100 73 45 5 33 19 34 7	3,6
25 71 CGS20N25 75 80	3,7
1, 1	6 60 2 x M10 / 10 4,7
100 28 CGS20N100 150 155	6,6
25 11 CGS30N25 86 90	5,5
	5 65 2 x M10 / 13 6,7
100 44 CGS30N100 161 165	9, 1
50 35 CGS50P50 122 127 50/496 100 70 CGS50P100 172 177 127 95 95 80 22 68 1	11,
30/430 100 10 GGCS01 100 112 111	6 95 2 x M12 / 15 15,
150 100 CGS50P150 222 227	20,
50 66 CGS100P50 141 148 100/929100 131 CGS100P10 191 198 175 130 130 100 22 88 2 9	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
100/02/0100 102 000 100 101 100	. 02,
150 199 CGS100P150 241 248 25 50 CGS150P25 137 146	39,· 36,·
50 100 CGS150P25 137 146 50 100 CGS150P50 162 171	36,
	50
150/1407 150 30 CGS150P10 212 221 213 160 160 120 30 118 3	3 12 $4 \times 18012 / 17 = 52,$
200 402 CGS150P200 312 321	73,
250 502 CGS150P25 <mark>0</mark> 362 371	83,

^{*}номинальное значение, см. значение в кН

CGS

Мощные цилиндры с гравитационным возвратом штока

Усилие: *5-500* Т

ход: **15-300 мм**

Макс. раб. давление: 700 бар

Цилиндры с нестандартными характеристиками и ходом штока поршня поставляются на заказ

													4_			
Усилие толкания	Ход	Объем масла	Модель	Мин. высота	Мин. высота с крышкой	Внешний диаметр	Диаметр поршня	Диаметр модели со штоком без органи- чителя хода	Диаметр модели со штоком с органи-	Высота штуцера	Диаметр встро- енной крышки	Выступающая часть поршня	Выступающая част поршня с крышкой	Монтажные отвер-	от дел пучере Монтажные отверстия, глубина	Bec
-*/-11		0							Разм	еры,	MM					
т*/кН	ММ	CMβ		Α	A1	D	Ε	F	FI	Н	J	K	K1	U	V/Z	КГ
	25	709	CGS200P25	151	160											57
	50	141	CGS200P50	176	185											65
	100	283	CGS200P10	0 226	235											81
200/198	3 4 50	425	CGS200P15	0 276	285	252	190	190	150	32	148	3	12	140	4xM16/2	0 95
	200	567	CGS200P20	0 326	335	5										111
	250	708	CGS200P25		385											126
	300	850	CGS200P30	0 426	435										141	
	25	866	CGS250P25	167	176											79
	50	173	CGS250P50	192	201											88
	100	346	CGS250P10		251											108
250/242	2450	519	CGS250P15		301	280	210	210	170	34	158	3	12	150	4 x M16 / 2	0 127
	200	692	CGS250P20		351											146
	250	865	CGS250P25	0 392	401											166
	300	103	CGS250P30		451											186
	25	103	CGS300P25		182											96
	50	207	CGS300P50	198	207											108
	100	415	CGS300P10		257											132
300/290		623	CGS300P15		307	305	230	230	190	38	158	3	12	170	4 x M16/2	0 155
	200	831	CGS300P20		357											178
	250	103	CGS300P25		407											202
	300	124	CGS300P30	0 448	457											225

^{*}номинальное значение, см. значение в кН

Мощные цилиндры с гравитационным возвратом штока

Технические характеристики

													4			
Усилие толкания	Ход	Объем масла	Модель	Мин. высота	Мин. высота с крышкой	Внешний диаметр	Диаметр штока	Диаметр модели со штоком без ограни- чителя хода	Диаметр модели со штоком с ограни- чителем хол	Высота штуцера	Диаметр встро- енной крышки	Выступающая часть штока	Выступающая част штока с крышкой	Монтажные отвер- стия для штуцера	Монтажные отверстия, глубина	Bec
*/ 11									Разм	еры,	MM					
т*/кН	MM	CM ³		Α	A1	D	Ε	F	FI	Н	J	K	K1	U	V/Z	КГ
	25	122	CGS350P25	180	192											119
	50	245	CGS350P50	205	217											132
	100	490	CGS350P10	0 255	267											162
350/343	3 6 50	736	CGS350P15	0 305	317	332	332 250	250	210	42	196	3	15	200	$4 \times M16/2$	0 190
	200	981	CGS350P20	0 355	367											218
	250	122	CGS350P25		417											247
-	300	147	CGS350P30		467											274
	25	143	CGS400P25	187	199											142
	50	286	CGS400P50	212	224											159
400 (40)	100	572	CGS400P10		274											192
400/400		858	CGS400P15		324	356	270	270	230	42	196	3	15	230	$4 \times M16/2$	
	200	114	CGS400P20		374											257
	250	143	CGS400P25		424											290
	300	171	CGS400P30		474											323
	25	176	CGS500P25		207											184
	50	353	CGS500P50	220	232											204
500 (40	100	706	CGS500P10	-	282	200	200	000	050	50	400		1.5	050	4 × M16 / 0	243
500/494		106			332	2	300	300	250	50	196	3	15	250	4 x M16 / 2	
	200	141	CGS500P20		382											323
	250	176	CGS500P25		432											
	300	212	CGS500P30	0 470	482											402

Комплектующие: крышки *ZTT*

*ном. значение, см. значение в кН

Обозначение модели

CGS	30	N	###	#
ряд	Усилие толкания, в т	№ с ограничителем хода Р= без ограничителя хода	Ход, в мм	F = с монтажными отверстиями в опоре T = со съемной встроенной крышкой

^{**}Цилиндры с усилием толкания менее 100 тонн рекомендуется заказывать малыми партиями.

CMC

Суперплоские цилиндры с пружинным возвратом поршня

стр. 21

КОМПЛЕКТУЮЩИЕ:

• ZTT крышка уменьшает воздействие любых эксцентричных нагрузок.

СТАНДАРТНЫЙ:

 Крышка, монтажные отверстия

Характеристики

Ряд цилиндров СМС имеет канавки, выполненные на наконечнике поршня для усиления захвата, модели с усилием больше 20 т - два отверстия с резьбой на конце штока для удобства монтажа крышки.

Все модели имеют сквозное отверстие для прикрепления при помощи болтов к рабочей поверхности, плоские боковые стенки, позволяющие расположить их в горизонтальном положении. Модели с усилием толкания 5 тонн снабжены грязесъемником, а 75 т - съемной ручкой для переноски.

Модель CMC5N6 поставляется со штуцером K71F (соединение 1/4" NPT).

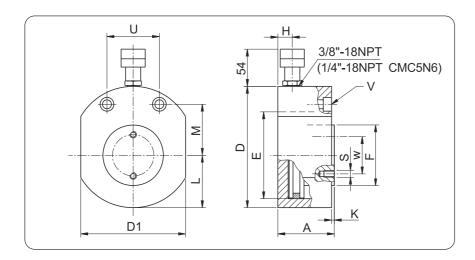
Сфера применения

Эти суперкомпактные легковесные цилиндры являются идеальным решением для работы в специальных областях.

Они применяются в точном оборудовании, преобразователях, мостовых конструкциях и т.д. и в судостроении для поднятия двигателей в рабочее положение и удаления гребных винтов.

Для подъема оборужования из очень низкого положения Грейферные подъемники UJ могут работать с тремя уровнями.

Благодаря малой маслоемкости цилиндров рекомендуется применять компактные ручные насосы PS



CMC

Суперплоские цилиндры с пружинным возвратом поршня

<u>Усилие: **5-150**</u> Т

ход: 6-15 мм

Макс. раб. давление: 700 бар

Цилиндры с нестандартными характеристиками и ходом штока поршня поставляются на заказ

Технические характеристики

			_						â	. =	ока	д СТ.	도 고		615		
Ход	Объем масла	Модель	Мин. высота	Внешний диаметр	Внешние размеры	Диаметр	Диаметр штока	Высоту штуцера	Выступ. часть што	Расст. иежду осьб. и внеш. диаметром	Расс. между монтаж. отверстиями и осью шт	Расстояние между цен точками монтаж. отвер	Сквозные отверсти ISO-4762 под винт	РСD монтажные отверстия для крышки		Bec	
ми	1 CM ^g							Раз	мерь	ı, MM						KE	
			Α	D	D1	Ε	F	Н	K	(L	۸.	1	U	V	W	s [™]	
6	4	CMC5№6	33	59	41	30	24	16	1	20,5	22,	5 28	, М	5	1	-	0,6
15	11	CMC5N15	42	59	41	30	24	19	1	20,5	22,	5 28	,5 N	15	-	+	0,8
10	16	CMC10N10	43	78	58	45	35	19	1	29	34	37	Me	-		- 1	,6
3 10	28	CMC20N10	52	100	76	60	45	19	1	39	40	50	M1	0		- 2	2,8
10	44	CMC30N10	59	115	95	75	55	19	1	48	44	52	M1	0 4	4 2	2xM5	4,2
15	106	CMC50N15	68	143	120	95	80	19	1	60	54	67	M ²	12 (55	2xM6	6,9
15	156	CMC75N15	80	166	142	115	100	19) 2	71	67	7	6 M	12	65	2xM6	12,0
915	199	CMC100N1:	86	178	160	130	100	20) 2	80	75	5 7	6 M	12	65	2xM6	14,5
)715	302	CMC150N1	100	217	194	160	120) 2	3 2	9	7 8	3 1	17 N	112	80	2xM6	24,
3	6 15 10 3 10 9 10 6 15 7 15	MM CM ² 6 4 15 11 10 16 8 10 28 9 10 44 6 15 106 7 15 156 9 15 199	MM CMF 6 4 CMC5N6 15 11 CMC5N15 10 16 CMC10N10 3 10 28 CMC20N10 0 10 44 CMC30N10 6 15 106 CMC50N15 7 15 156 CMC75N15 915 199 CMC100N13	MN CMF A 6 4 CMC5N16 33 15 11 CMC5N15 42 10 16 CMC10N10 43 8 10 28 CMC20N10 52 10 10 44 CMC30N10 59 6 15 106 CMC50N15 68 7 15 156 CMC75N15 80 9 15 199 CMC100N15 86	Ми см А D 6 4 СМС5N6 33 59 15 11 СМС5N15 42 59 10 16 СМС10N10 43 78 8 10 28 СМС20N10 52 100 10 10 44 СМС30N10 59 115 6 15 106 СМС50N15 68 143 7 15 156 СМС75N15 80 166 9 15 199 СМС100N15 86 178	No. No.	No No No No No No No No	No No No No No No No No	Ho Ho Ho Ho Ho Ho Ho Ho	No. No.	ММ СМ ММ СМ ММ СМ М	No. No.	Размеры, мм A D D1 E F H K L M 6 4 CMC5N6 33 59 41 30 24 16 1 20,5 22,5 28 15 11 CMC5N15 42 59 41 30 24 19 1 20,5 22,5 28 10 16 CMC10N10 43 78 58 45 35 19 1 29 34 37 310 28 CMC20N10 52 100 76 60 45 19 1 39 40 50 310 24 CMC30N10 59 115 95 75 55 19 1 48 44 52 315 106 CMC30N10 59 115 95 75 55 19 1 48 44 52 315 106 CMC50N15	MM см A D D1 E F H K L M U 6 4 CMC5N6 33 59 41 30 24 16 1 20,5 22,5 28,5 M 15 11 CMC5N15 42 59 41 30 24 19 1 20,5 22,5 28,5 M 10 16 CMC10N10 43 78 58 45 35 19 1 29 34 37 M6 310 28 CMC20N10 52 100 76 60 45 19 1 39 40 50 M1 310 44 CMC30N10 59 115 95 75 55 19 1 48 44 52 M1 315 106 CMC50N15 68 143 120 95 80 19 1 60 54 67	MM см ⁶ A D D1 E F H K L M U V 6 4 CMC5N6 33 59 41 30 24 16 1 20,5 22,5 28, M5 15 11 CMC5N15 42 59 41 30 24 19 1 20,5 22,5 28,5 M5 10 16 CMC10N10 43 78 58 45 35 19 1 29 34 37 M6 - 310 28 CMC20N10 52 100 76 60 45 19 1 39 40 50 M10 310 24 CMC30N10 59 115 95 75 55 19 1 48 44 52 M10 4 310 28 CMC30N15 68 143 120 95 80 19 1 48 <td>мм сме Мин сме Мин сме Мин сме Мин версилами монтаж. отверстия изикамертия образивертия в монтаж отверстия изикамертия образивать образива</td> <td> MM CM CM</td>	мм сме Мин сме Мин сме Мин сме Мин версилами монтаж. отверстия изикамертия образивертия в монтаж отверстия изикамертия образивать образива	MM CM CM

*номинальное значение, см. kH ** CMC5N6 с K71F (штуцер 1/4" NPT)

Комплектующие: крышки ZTT

j j
5
اه الله الله الله الله الله الله الله ا
1 11/2///
† ! Z ' !
'→' →
H

Модель	Для моделей	а	b	j	z	w	КГ
ZTT30	CMC30N10	19	1	53	5,5	44	0,3
ZTT50	CMC50N15	25	1	68	6,5	65	0,9
ZTT100	CMC75N15 CMC100N15	34	2	88	6,5	65	1,7
ZTT150	CMC150N15	45	3	118	6,5	80	3,4

CMF

Стальные и алюминиевые цилиндры с полым поршнем, пружинный возврат штока

ХАРАКТЕРИСТИКИ

Все цилиндры СМF поставляются в стандартном комплекте с мягкой полой крышкой, ввинчивающейся в резьбовое отверстие штока. На гильзу цилиндра нанесена метрическая кольцевая резьба для прикрепления комплектующих.

На конце стопорной гайки имеется уплотнительное кольцо для предотвращения попадания грязи в цилиндр. Цилиндры поставляются с антикоррозийным покрытием, которое очень эффективно защищает отверстие цилиндра.

СФЕРА ПРИМЕНЕНИЯ

Этот тип цилиндров рекомендуется для натягивания, поднятия грузов при помощи блока, корчевания и т.д.

Их можно использовать в операциях по толканию и вытягиванию грузов путем пропускания бруска или кабеля через полую крышку. Цилиндры поставляются в комплекте со съемниками UE.

КОМПЛЕКТУЮЩИЕ:

• Крышки с резьбой ZTE с бруском и удлиняющими болтами

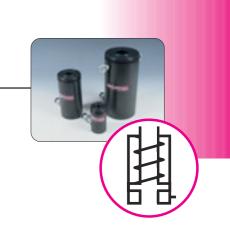
МОДЕЛИ:

•*L* - модель. Цилиндры с гильзой из алюминия (CMF ###L###)

СТАНДАРТ:

 Мягкая полая крышка предотвращает деформацию штока.

Наш технический отдел может осуществить разработку моделей на заказ.


CMF

Стальные и алюминиевые цилиндры с

пустотелыми поршнями, пружинный

возврат штока 3/8"-18NPT

Усилие: *10-100* Т

50-160 мм Ход:

Макс. раб. давление:

Цилиндры с нестандартными характеристикам и ходом штока поршня поставляются на заказ

Технические характеристики стальных цилиндров

Гехн	ичес	ские	характерис	тики	1 ста	ІЛЬН	ΗЫΧ	ЦИ	ЛИН	ІДР	ОВ		ГИЯ						
Усилие толкания	Ход	Объем масла	Модель	Мин. высота	Внешний диаметр Внеш. диам. L модель	Диаметр поршня	Диаметр штока	Высота штуцера	Диаметр пустотелой крышки	Выступающая часть штока	Внутренняя резьба штока	Глубина резъбы штока	Монтажные отвер¢тия для штуцера	Монтажные отверстия в опоре, глубина	Кольцевая резьба	Длина кольцевой резьбы	Диаметр сквозного отверстия	Bec	Вес, модель L
т*/кН	ММ	СМ3		Α	D	Ε	F	Н	ا ر		Размер <i>К О</i>			U V/Z	W	Χ	Υ	кг	КГ
10/123	50	88	CMF10N50	132	74/75	55	40	19	34,5	1	M30x1,	5 16	50,8	2xM8 /	8 M74x2	20	21	3,8	2,5
70/ 120	80	141	CMF10N80	176	14/13	33	40	19	34,3		IVISUX I,	5 10	30,0	ZXIVIO /	D IVI74X2	20	21	4,8	3,1
	50	164	CMF20N50	150														7,8	5,3
20/230		328	CMF20N100	221	100/10	75	56	19	47,5	2	M40x1,5	24	82,6	2xM8 / 1	0 M100x	2 20	28	10,7	
	160	525	CMF20N160	305														14,1	9,5
	50	239	CMF30N50	160														10,5	8,1
30/334	1 100	477	CMF30N100	233	115/12	5 90	65	21	57,5	2	M48x1,5	32	92,2	2xM10 / 12	M115x2	20 :	4	14,5	
	150	716	CMF30N150	303														18,1	13,6
60/590	75	632	CMF60N75	219	165/18	125	90	26	81,	5 2	M72x1,	5 40	120.2	24142/40	MACENA	٥٤		28,9	21,4
00/000	150	1264	CMF60N150	331	103/18	J 125	90	26	01,	0 2	IVI72X1,	p 40	130,2	2xM12 / 16	IVI 105X4	25	54,5	39,9	28,6
100/94	7 75	1015	CMF100N75	270	215/23	5 165	12	5 36	117	5 4	M102x1,5	55	130	4xM12 / 15	M215x4	35	80,5	59,3	44,6

^{*}ном. значение, см. значение в кН

Комплектующие: крышки ZTE с резьбой

∠ - j -	Модель	Для использования с	а	k	j	р	у	0	КГ
	ZTE10	CMF10# ###	20	4	34,5	16	3/4" – 16 UNF	M30x1,5	0,1
	ZTE20	CMF20# ###	30	6	47,5	24	1" – 8 UNC	M40x1,5	0,25
y	ZTE30	CMF30# ###	39	7	57,5	32	1 1,4" – 7 UNC	M48x1,5	0,32
0	ZTE60	CMF60# ###	47	7	81,5	40	15/8" – 5, 5 INS	M72x1,5	0,85
0 -	Z1E60	CMF60# ###	47	7	81,5	40	15/8' – 5, 5 /NS	M72x1,5	0,85

Обозначение модели

CM F	10	#	###
Ряд	Усилие толкания, в т	N= сталь <i>L</i> = алюминий	Ход, в мм

Многофункциональные цилиндры, пружинный возврат штока

КОМПЛЕКТУЮЩИЕ:

• Крышка ZTT, снижает воздействие эксцентричных нагрузок.

СТАНДАРТ:

- Монтажные отверстия в основании
- Крышка, предотвращающая деформацию штока

ХАРАКТЕРИСТИКИ

Гильзы всех цилиндров снабжены кольцевой резьбой и имеют монтажные отверстия в опоре.

Цилиндры поставляются со съемными крышками с пазами, модели с усилием больше 30 т имеют ручку для транспортировки.

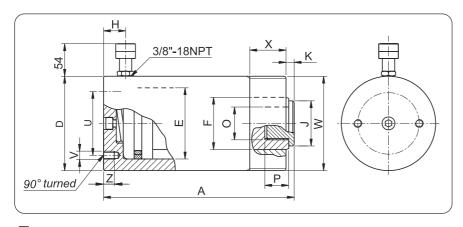
На моделях с усилием более 5 т имеется уплотнительное кольцо для предотвращения попадания грязи в цилиндр и продления срока его службы.

СФЕРА ПРИМЕНЕНИЯ

Эти цилиндры могут работать в любом положении и подходят для различных целей, в том числе для работы в промышленных цехах, возведении металлических конструкций, в прессах и для др. специальных назначений.

Обработка азотированием придает цилиндрам исключительную коррозионную стойкость, что позволяет использовать их в работаъх на открытом воздухе и в агрессивных средах.

Для этих цилиндров лучше всего подходят блоки питания MD


Комплектующие: крышки ZTT

ů j	Модель ZTT10	Для использования с <i>CMI10N25</i>	a 16	b 1	C -	j 34	u -	z 5,5	к 24	кг 0,1
ZW										
is j	ZTT11	CMI10N###	9	21	12	34	M24x2	? -	-	0, 1
Q u	ZTT31	CMI25N### CMI30N210	16	30	14	53	M32x2	-	-	0,3
ů	ZTT51	CMI50N###	18	26	8	68	65	5,5	45	0,8
Q R	ZTT101	CMI100N###	22	32	10	88	85	6,5	65	1,6
U U										

CMI

Многофункциональные цилиндры, пружинный возврат штока

ход: 25-350 мм

Макс. раб. давление: 700 бар

Техн. характеристики *ном. значение, см. в кН

 \otimes Монтажные отверстия для крышек ZTT10

Усилие толкания	Ход	Объем масла	Модель	Мин. высота	Внешний диаметр	Диаметр поршня	Диаметр штока	Высоте штуцера	Диаметр крышки	Выступающая часть штока	Внутренняя резъба штока	Глубина резъбы штока	Монтажные отверстия	Монтажные отвер- стия в опоре, глубина	Кольцевая резьба. длина	Bec
т*/кН	MM	СМ 3		А	D	E	F	Н	Pa3	мерь К	I , MM	Р	U	V Z	W X	кг
	25	18	CMI5N25	92												1,1
	50	35	CMI5N50	117										М6	M40X1.5	1,3
F /40 /	75	53	CMI5N75	142	40	30	25	19	24.5	2	M16V1 5	11	25	IVIO	WHUN I,	1,5
5/49,5	125	88	CMI5N125	202	40	30	25	19	24,5		M16X1,5	14	25	10	28	1.9
	175	124	CMI5N175	252										10	20	2,3
	225	159	CMI5N225	302												2,7
	25	40	CMI10N25	83					<i>33</i> ⊗	⊗	-	-				2,0
	50	80	CMI10N50	120												2,6
	100	159	CMI10N100	170										М8	M60X1,5	5 3,5
10/11	, 150	238	CMI10N150	245	60	45	35	19	34	5	M24x2	15	39			4,7
10/11	200	318	CMI10N200	295										12	28	5,6
	250	398	CMI10N250	345												6,5
	300	477	CMI10N300	408												7,5
	350	557	CMI10N350	458				33								8,2
	25	83	CMI25N25	119												4,6
	50	166	CMI25N50	144												5,3
	100	332	CMI25N100	214											14051/0	7,5
	150	498	CMI25N150	264										M10	M85X2	8,8
25/232	200	664	CMI25N200	314	85	65	55	19	53	9	M32X2	16	58		40	10,2
	250	830	CMI25N250	364										14	40	11,6
	300	996	CMI25N300	414												13,0
	350	1161	CMI25N350	485				43								15,0
30/30	9 210	928	CMI30N210	386	102	75	55	47	53	9	M32x2	16	-	-	3 5/1 ë-12 49	18,4
	50	354	CMI50N50	164										1440	14105 1	14,2
50/49	100	709	CMI50N100	214]	6-			6-		1440	4.0	_	M12	M125x2	17,4
30/49	150	1063	CMI50N150	264	127	95	80	25	65	4	M16	12	95	10	40	20,8
	325	2304	CMI50N325	439										18	40	32,6
100/92	100	1327	CMI100N100	246	17F	120	100	26	0F	4	M16	17	140	M12	M168x2	39,6
100/92	150	1991	CMI100N150	296	175	130	100	26	85	4	IVIIO	17	140	18	51	46,0

CML

Алюминиевые цилиндры, пружинный возврат штока

XAPAKTEPUCTUKU

Шесть моделей, изготовленных из высокопрочного алюминиевого сплава с защитным покрытием для повышения коррозионной стойкости. Уплотнительные кольца предотвращают попадание грязи в цилиндр.

Все модели поставляются со съемными крышками с канавками и имеют два боковых отверстия с резьбой для крепления крышки, чтобы снизить воздействие боковых нагрузок.

Цилиндры также снабжены ручкой для транспортировки.

СФЕРА ПРИМЕНЕНИЯ

Благодаря малому весу и компактным размерам эти цилиндры подходят для применения в случаях, когда вес и удобство в работе являются главными требованиями.

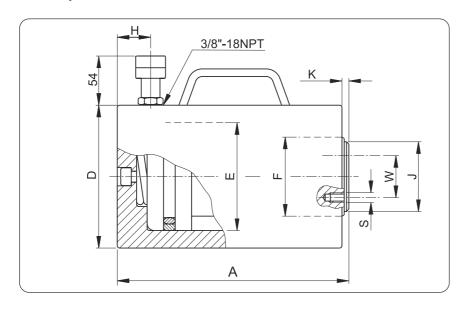
КОМПЛЕКТУЮЩИЕ:

Съемная крышка ZTT, снижают воздействие эксцентричных нагрузок

СТАНДАРТ:

• Крышка предотвращает риск деформации штока.

CML цилиндры характеризуются малым весом Вместе с насосами PL они образуют легковесную и удобную в эксплуатации систему



CML

Алюминиевые цилиндры, пружинный возврат штока

Усилие: *50-100* Т

ход: 50-150 мм

Макс. раб. давление: 700 бар

68

88

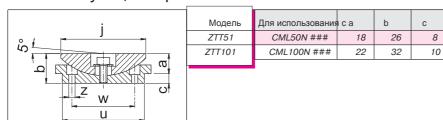
65

85

5,5

6,5

45


Цилиндры с нестандартными характеристиками и ходом штока поршня поставляются на заказ

Технические характеристики

											ТИЯ		
Усилие толкания	Ход	Объем масла	Модель	Мин. высота	Внешний диамет <i>р</i>	Диаметр поршня	Диаметр штока	Высота штуцера	Диаметр крышки	Выступающая часть штока	Монтажные отверс для крышек	Монтажные отвер- Ттия в основе для крышек	Bec
т*/кН	B4 B4	CM ³					Р	азмеры,	MM				кг
I / KII	IVIIVI	CIVI		Α	D	Ε	F	Н	J	K	W	S	NI
	50	354	CML50N50	158									7,0
50/49	6 100	709	CML50N100	208	130	95	80	25	65	4	45	2 x M5	8,6
	150	106	CML50N150	258									10,3
100/92	100	132	CML100N10	0 246	178	130	100	25	85	4	65	2 x M6	18,8
100/92	150	199	CML100N15	0 296	1/6	130	100	23	85	4	65	2 X IVIC	21,4

^{*}номинальное значение, см. в кН

Комплектующие: крышки ZTT

0,8

1,6

Компактные цилиндры, пружинный возврат штока

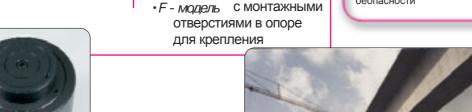
ХАРАКТЕРИСТИКИ

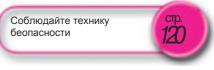
Относительно малая высота по сравнению с длиной хода. Цилиндры СМР имеют самую большую длину хода в ряду моделей с пружинным возвратом. Все цилиндры имеют штоки с пазами в верхней части для повышения силы захвата и два отверстия с резьбой для крепления крышки. Это рекомендуется в случаях вероятности возникновения боковых нагрузок. Уплотнительные кольца предотвращают попадание грязи в цилиндр. Также возможно выполнение

монтажных отверстий.

СФЕРЫ ПРИМЕНЕНИЯ

Малые размеры и антикоррозийная обработка делают эти цилиндры идеальным решением для любых работ по подъему, выравниванию, поддержке и прессованию в условиях экономии места и/или агрессивных сред. Среди наиболее частых применений можно назвать работы по обслуживанию, сборку на производстве и строительные работы.

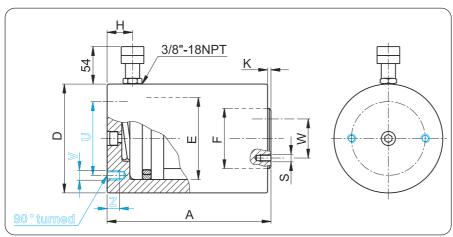

КОМПЛЕКТУЮЩИЕ:


Крышка ZTT, снижает водействие эсцентричных нагрузок.

МОДЕЛИ:

• F - модель с монтажными отверстиями в опоре

СТАНДАРТ:


• Монтажные отверстия для крышки

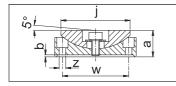
CMP

Цилиндры малых размеров, пружинный возврат штока

ход: 25-50 мм

Макс. раб. давление: 700 бар

>


Цилиндры с нестандартными характеристиками и ходом штока поршня поставляются на заказ

Технические характеристики

												ě		
Усилие толкания	Ход	Объем масла	Модель	Мин. высота	Внешний диаметр	Диаметр поршня	Диаметр штока	Высота штуцера	Выступающая часть штока	Монтажные отвер- стия РСD	Монтажные отвер- стия в опоре, глубина	Монтажные отвер- стия РСD для крышек	Монтажные отвер- стия для крышек	Bec
т*/кН	ММ	CM ³		Α	D	Ε	F	Н	Разме <i>К</i>	еры, мі <i>U</i>	M V Z	W	s	КГ
10/11	25	40	CMP10N25	72	7.5	4.5	0.5	40		0.5	2 x M8	0.4	0 145	2,5
10/11	50	80	CMP10N50	97	75	45	35	19	1	25	6	24	2 x M5	3,2
20/198	25	71	CMP20N25	75	88	60	45	19	1	60	2 x M10	34	2 x M5	3,4
20/190	50	141	CMP20N50	100	00	80	45	19	,	80	10	34	Z X IVIS	4,2
30/30	25	110	CMP30N25	86	102	75	55	19) 1	65	2 x M10	44	2 x M5	5,0
30/303	50	221	CMP30N50	111	102	73	33	13	,	00	13	44	2 X IVIS	6, 1
50/496	25	177	CMP50N25	97	127	95	80	22	1	95	2 x M12	65	2 x M6	7,6
30,400	50	354	CMP50N50	122	121	55					15		2 X IVIO	9, 1
100/92	25	332	CMP100N25	116	175	130) 100) 2.	2 :	7 1	₄₀ 2 x M12 17	6.	5 2 x M6	17,6
100,02	50	664	CMP100N50	141		.50	, , ,				17		2 2 7 7 7 7	20,5

*номинальное значение, см. в кН

Комплектующие: крышки ZTT

Модель	Для использования с	а	b	j	Z	W	КГ
ZTT10	CMP10N ##	16	1	34	5,5	24	0,1
ZTT20	CMP20N ##	18	1	43	5,5	34	0,2
ZTT30	CMP30N ##	19	1	53	6,5	44	0,3
ZTT50	CMP50N ##	25	1	68	6,5	65	0,9
ZTT100	CMP100N ##	34	2	88	6,5	65	1,7

Обозначение модели

CMP	10	N	##	#
ряд	Усилие толка-	<i>№</i> = стандарт	Ход, в мм	F = с монтажными отверстиями в опоре
	ния, в т			

CMT

Стальные и алюминиевые цилиндры-съемники, пружинный возврат штока

КОМПЛЕКТУЮЩИЕ:

• Набор проушин ZAS для цилиндров ряда N

Эти цилиндры можно использовать с ручными насосами PL, с которыми они образуют переносную гидравлическую систему

ХАРАКТЕРИСТИКИ

Сталь

Цилиндры имеют резьбу на гильзе, штоке и опоре для прикрепления соответствующих комплектующих. Внутреннее и наружное азотированное покрытие увеличивает устойчивость к износу и коррозии.

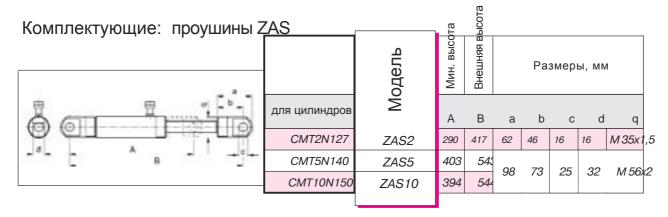
Алюминий

Полностью изготовленные из алюминия (кроме штока и проушин), эти цилиндры имеют анодированное покрытие для защиты от коррозии.

В цилиндрах устанавливается гофрированная трубка для защиты штока, у моделей с усилием больше 30 т имеются ручки.

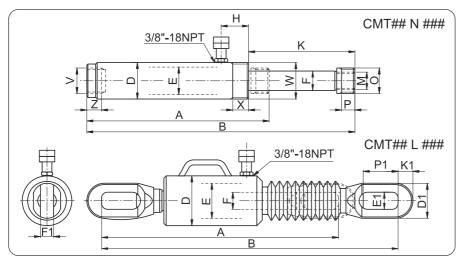
СФЕРЫ ПРИМЕНЕНИЯ

Сталь


Сборка, строительство и лабораторные работы по измерению сопротивления материалов.

Алюминий

Судостроение, строительство металлических конструкций, сдвижение плит или сборных элементов, требующих последующей сварки.



CMT

Съемные цилиндры, пружинный возврат штока, сталь и алюминий

Усилие: **2-60** Т

ход: 127-150 мм

Макс. раб. давление: 700 бар

Цилиндры с нестандартными характеристиками и ходом штока поршня поставляются на заказ

Технические характеристики стальных цилиндров

Усилие толкания	Ход	Объем масла	Модель	Мин. высота	Внешняя высота	Внешний диаметр	Диаметр поршня	Диаметр штока	Высота штуцера	Выступающая часть штока	об т ге Резьба штока В	Резьба крышки	Длина резъбы крышки	Внутренняя резьба цилиндра	Длина внутренней	резьов цилиндра Резьба гильзы цилиндра, длина	Bec
т*/кН	MM	CM ³		Α	В	D	Е	F	Н	K	M	0	Р	V	Z	W/X	КГ
2/22,	9 127	41	CMT2N127	244	371	48	30	22	39	155	M18 x 1,5	3/4" NPT	18	3/4" NF	PT 20	M40x1,5/	202,9
5/55	140	110	CMT5N140	301	441	60	45	32	45	175	M30 x 2	11/4" N	P22	1 1/4" NF	T 24	M60x1,5/2	26 4,9
10/11	0150	236	CMT10N150	302	452	80	55	32	39 1	189	M30 x 2	-	30	M30 x 2	25	M80x2 / 20	8,0

Технические характеристики стальных цилиндров

Усилие толкания	Ход	Объем масла	Модель	Мин. высота	Внешняя высота	Внешний диаметр	Диаметр поршня	Диаметр штока	Высота проушины	Ширина зазора	Ширина проушины	Толщина верха	проушины Длина зазора	Bec
т*/кН	ММ	см з		Α	В	D	Ε	Pas F	мерь <i>D</i>			F1	K1	кг <i>Р1</i>
10/11		236	CMT10L150	526	676	75	55	32	55	32	20 .	20 1	00 4	4,4
30/33	150	716	CMT30L150	612	762	128	90	45	90	44	34	38	100	13,2
60/55		1199	CMT60L150	720	870	168	120	65	120	61	50	50	140	27,8

*номинальное значение, см. в кН

Обозначение моделей

CMT	10	N	###
ряд	Усилие толкания, т	№ = сталь L = алюминий	Ход, мм

Цилиндры промышленные двустороннего действия

КОМПЛЕКТУЮЩИЕ:

- ZAE скобы с проушиной для монтажа на штоке или основании
- •ZAF фланец

Монтириуется на концех гильзы цилиндра

• ZAР пластина

Крепится на обработанных концах гильзы вместо фланца

• ZAA гайка

Используется для блокировки фланца или пластины

По причине своеобразной конструкции, цилиндры поставляются без штуцеров K73F, которые можно заказать отдельно.

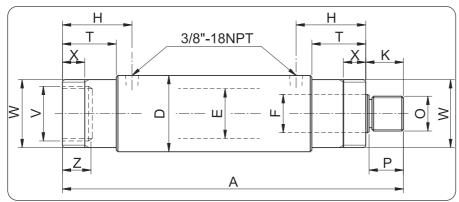
ХАРАКТЕРИСТИКИ

Все цилиндры СОD имеют резьбу на гильзе, штоке и опоре, что позволяет расширить область их применения. Поставляется полный набор комплектующих для различных применений.

На направляющей и конце стопорной гайки имеется уплотнительное кольцо для предотвращения попадания грязи в цилиндр и продления срока его службы.

СФЕРЫ ПРИМЕНЕНИЯ

Эти цилиндры можно использовать в промышленном производстве, требующем большого количеств циклов. Операции блокировки, лабораторные исследования материалов и силы вытягивания.


Обработка азотированием позволяет использовать цилиндры в работах на открытом воздухе и в агрессивных средах.

COD

Промышленные цилиндры двустороннего действия

Усилие: **5-25 Т**

ход: 30-260 мм

макс. раб. давление: 700 бар

Технические характеристики

Усилие толкания	Усилие вытягивания	Ход	Объем масла	Объем масла пои вытягивании	Модель	Мин. высота	Внешний диаметр	Диаметр поршня	Диаметр штока	Высота штуцера	Выступающая часть штока	Ф Резьба штока	— Длина резьбы мтока	Длина кольца	Внутренняя резьба цилиндра	Глубина внутренней резъбы цилиндра	Кольцевая резьба	Длина кольцевой резьбы	Bec
т*/ кН	т*/ кН	MM	CM 3	CM⁵		Α	D	Ε	F	Н				P	Т	V	Ζ	W	X
		30	21	12	COD5N30	185													2,1
5/49,5	3/27,	5 80	57	31	COD5N80	235	50	30	20	45	22	M18		26			M42		2,8
		160	113	63	COD5N160	315						x1,5			x1,5		X	1,5	3,8
		30	42	27	COD10N30	204													3,6
10/97	6/62	80	111	72	COD10N80	254	63	42	25	54	23	M22	20	35	M42	15	M56	15	4,5
10/01	0,02	160	222	143	COD10N160	334	00	42	23	54	23	x1,5		33	x1,5) NISO	2	5,8
		260	360	233	COD10N260	434													7,3
15/13	7 8 /8 1	160	314	185	COD15N160	376	80	50	32	71	31	M30	28	52	M56	27	M70	16	10,8
10/10	0,01	260	511	301	COD15N260	476	50	50	02	7 1	31	x2	20	J2	x2	21	x2		13,9
25/23	212/12	160	531	276	COD25N160	415	92	65	45	84	44	M42	38	65	M70	30	M85	20	15,5
_0, _0	, .2	260	863	449	COD25N260	515	32	0.5	40	04	44	x1,5		03	x2	30	X		19,4

*номинальное значение, см. в кН

Комплектующие: ZAE - ZAF - ZAP - ZAA

		Модель	а	b	С	d	е	f	h	m	q	КГ
ZAE	ZAF	ZAE5	62	46	16	16	-	-	-	M18x1,5	M35x1,5	0,3
c d	L C -1	ZAE10	77	58	20	25	-	-	-	M22x1,5	M42x1,5	0,6
	a e	ZAE15	98	73	25	32	-	-	-	M30x2	M56x2	1,2
		ZAE25	112	80	32	38	-	-	-	M42x1,5	M70x2	2,0
		ZAF5	42	98	78,6	11	17	-	-	1	-	0,8
	♥++++) # # 4	ZAF10	56	118	99	11	23	-	-	-	-	1,5
q m		ZAF15	70	145	116	17	35	-	-	-	-	3,4
		ZAF25	85	168	136	17	45	-	-	-	-	6,0
ZAP	ZAA	ZAP5	42	80	58	10,5	17	60	32	-	-	0,4
	∟ a 」	ZAP10	56	110	82,6	13	23	82	45	-	-	1,1
- f - e -	, q , ,b,	ZAP15	70	135	100	21	35	100	52	-	-	2,6
		ZAP25	85	160	118	26	45	125	63,5	-	-	5,1
		ZAA5	58	9	-	-	-	-	-	-	M42x1,5	0,1
	 	ZAA10	78	12	-	-	-	-	-	-	M56x2	0,3
		ZAA15	95	16	-	-	-	-	-	-	M70x2	0,6
<u> h d </u>		ZAA25	108	20	-	-	-	-	-	-	M85x2	0,8

COF

Цилиндры с полым поршнем, гидравлический возврат штока

XAPAKTEPUCTUKU

Все цилиндры СОF поставляются с мягкими полыми крышками с отверстием в центре, имеют резьбу на гильзе, штоке и основании для облегчения установки и крепления комплектующих.

Предохранительный клапан, соединенный с камерой свободного хода поршня, предотвращает перегрузки. На конце стопорной гайки имеется кольцо предотвращающее попадание грязи. Обработка азотированием позволяет использовать цилиндры в работах на открытом воздухе и в агрессивных средах.

КОМПЛЕКТУЮЩИЕ:

• ZTE крышка с резьбой для крепления резьбовых стержней.

СТАНДАРТ:

Мягкая полая крышка предотвращает риск деформации штока.

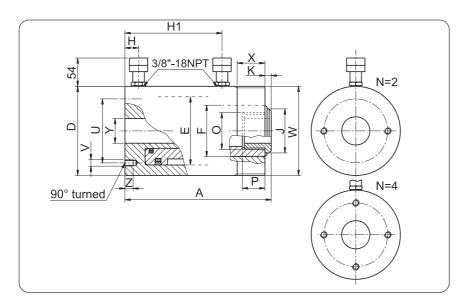
Сквозные отверстия позволяют применять цилиндры для работ по натяжению, установке и снятию блоков, насадок и труб теплообменников.

Их также можно применять для перемещения грузов при помощи пропускания стержня или кабеля, прикрепленных к крышке.

Цилиндры из алюминия иили с нестандартным ходом или отверстиями поставляются на заказ.

Ручные насосы PL262, PL264 и PL268 с четырехсторонним клапаном хорошо подходят для цилиндров с гидравлическим возвратом штока

Соблюдайте технику безопасности



COF

Цилиндры с пустотелым поршнем, гидравлический возврат штока

Технические характеристики

Усилие: *30-200* Т

ход: 75-250 мм

Макс. раб. давление: 700 бар

ĸa

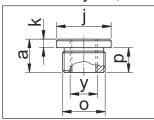
Цилиндры с нестандартными характеристиками и ходом штока поршня поставляются на заказ

													TO K8		ō		m				
Усилие толкания	Усилие вытягивания	Ход	Объем масла при толкании	Объем масла при вытягивании	Модель	Мин. высота	Внешний диаметр	Диаметр поршня	Диаметр штока		рысота штуцера	Диаметр пусто- телой крышки.	Выступающая часть шт	Внутренняя резьба штока	Глубина резьбы шт	Монтажные отверстия РС <i>D</i>	Монтажные отвер- стия опоры, глубина	Кольцевая резьба	Длина кольцевой резьбы	Диаметр сквозно- го отверстия	Bec
т*/ кН	т*/ кН	мм	СМ 3	CM⁵		А	D	Е	F	Pa		ры, I	мм k	(0	F) (<i>V</i> J Z	z w	Х	Y	кг
		100	47	7 25	COF30N100	196	5				152)									13
30/334	18/176	150	71	6 37	COF30N150	246	115	90	70	21	202	57,5	,	и48_3	2 (65 <i>2</i>	хM10	M115	20	34	16
		250	119	3 6	COF30N250	346	5				302	?		x1,5			12	2 x.	2		21
		75	632	33	COF60N75	186	5				134	!									26
60/590	31/309	100	84	2 44	COF60N100	21	165	125	100	26	159) 81,5	2	M72	4	9	0 4xM	10 M16	55 2.	5 <i>54,</i>	28
	01/003	150	126	§4 6	COF60N150	26	100	120	700	20	209) 01,0		x1,5	71	, ,	16		_	0 54,	34
		250	210	06 1	COF60N250	36	1				309)									46
		75	101	5 60	COF100N75	214	4				155)									47
100/947	58/568	150	202	9 12	COF100N15	0289	215	165	130	36	230	117,5	54	M102	5	5 1	1] '	35 80	,561
		250	338	32 20	COF100N25	0389	þ				330)		x1,5			15) X4	7		79

190 150 36

230 190 37

*номинальное значение, см. в кН


Комплектующие: Крышки с резьбой ZTE

COF150N200349247

COF200N200380305

4100

56\$5

150/14376/748200

200/197**9**4/924200

Модель	Для использования с	а	k	j	р	У	0	КГ
ZTE30	COF30N ###	39	7	57,5	32	1 _{1/4} " - 7 UNC	M48x1,5	0,32
ZTE60	COF60N ###	47	7	81,5	40	15/8" - 5,5 UNS	M72x1,5	0,85

M112x260

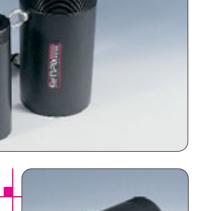
M135x270

284 127,54

305 167,55

100

160


80,5

COI

Многофункциональные цилиндры, гидравлический возврат штока

КОМПЛЕКТУЮЩИЕ:

 Крышка ZTT снижает воздействие эксцентричных нагрузок.

СТАНДАРТ:

Монтажные отверстия в основании

Крышка предотвращает риск деформации штока.

ХАРАКТЕРИСТИКИ

Эти цилиндры характеризуются кольцевой резьбой, резьбой на штоке и монтажными отверстиями в основании.

Цилиндры поставляются со съемной крышкой с канавками, модели с усилием свыше 30 т имеют проушины для транспортировки.

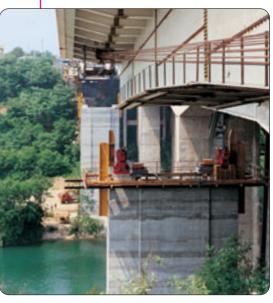
Предохранительный клапан, соединенный с камерой свободного хода поршня. предотвращает перегрузки. На конце стопорной гайки имеется кольцо,

предотвращающее попадание грязи и продлевающее срок службы цилиндра.

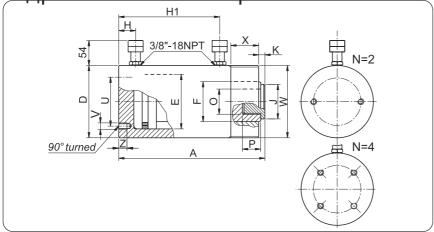
СФЕРЫ ПРИМЕНЕНИЯ

Эти многофункциональные и мощные цилиндры можно использовать в промышленном производстве, требующем большого количества циклов. Их можно использовать для подведения конструкций подземных переходов, штабелирования и в прессах.

В условиях нерегулярного использования цилиндры ряда COS являются самым экономичным решением.



Для таких цилиндров лучше всего подходят модульные блоки питания с четырехсторонними клапанами.



COI

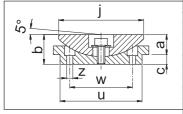
Многофункциональные цилиндры,

гидравлический возврат штока

Усилие: *10-500* Т

ход: 150-325 мм

Макс. раб. давление: 700 бар


Цилиндры с нестандартными характеристиками и ходом штока поршня поставляются на заказ

Технические характеристики

	_											a		ě						
Усилие толкания	Усилие вытягивания	Ход	Объем масла		при вытягивании	Модель	Мин. высота	Внешний диаметр	Диаметр поршня	Диаметр штока	Высота штуцера	Параметры штуцера	Диаметр крышки	Выступающая часть штока	Внутренная резьба штока	Глубина резьбы штока	Монтажные отверстия РСD	Монтажные отвер- стия на опоре, глубина	Кольцевая резьба Глубина резьбы	Bec
-+/ -11	*/											Раз	мер	ы,	MM			V	W	
т*/ кН	T^/ KH N	ИM	СМ 3	CN	4		Α	D	Ε	F	Н	Н	11	J	K	0	P	UΖ	X	КГ
10/11	1 5/55	150 250		39 98	1	COI10N150 COI10N250	258 358	60	45	32	19	213 313	34	6	M24x2	15	39	2 x M8 12	M60x1,5	5,2 6,8
30/30	9 10/11	150 1 250	66	63 104	2	COI30N150 COI30N250	279 379	100	75	60	23	221 331	53	9	M32x2	16	50	2 x M10 15	0 м100x2 30	
50/496	§ 15/14	150 325		63 804	3	COI50N150 COI50N325	288 463	127	95	80	25	234 409	65	4	M16	17	75		2 M125x2 31	26,5 41.0
100/929	38/37	150 300		991 982	8	COI100N150		175	130	100	33	<i>250 400</i>	85	4	M16	17	100	4 x M12 23	2 м168х2 50	55 77
150/1407	62/610	150 300	30 60)16)32	1 2	COI150N150 COI150N300		215	160	120	40	255 405	105	6	M16	17	130	4 x M16 23	6 м215х4 56	85 118
200/1984	76/748	150 300		253 506	1 3	COI200N150		255	190	150	48	268 418	135	7	M16	17	140	4 x M16 23	60 м255х4	129 177
300/2908	94/92	300 300	_	232 464	1	COI300N150		305	230	190	60	290 440	175	7	M16	17	200	4 x M16 30	6 M305х4 74	208 278
400/4008	3 11 <i>2</i> 1099	150 250		88 314	2	COI400N150	. — .	355	270	230	70	310 410	215	7	M16	17	250	4 x M20 33) м355х4 84	307 373
500/4948	1 54/1512	150 250		603 671	3	COI500N150		395	300	250	80	330 430	235	12	M16	17	280	4 x M20 40) мз95х4 100	416 495

*номинальное значение, см. в кН

Комплектующие: крышки ZTT

Модель	Для использования с	а	b	С	i	u	Z	W	КГ
ZTT11	COI10N ###	9	21	12	34	M24x2	-	-	0,1
ZTT31	COI30N ###	16	30	14	53	M32x2	-	-	0,3
ZTT51	COI50N ###	18	26	8	68	65	5,5	45	0,8
ZTT101	COI100N ###	22	32	10	88	85	6,5	65	1,6
ZTT151	COI150N ###	32	42	10	118	105	6,5	80	3,2
ZTT201	COI200N ###	39	51	12	148	135	8,5	110	6,5
ZTT301	COI300N ###	43	55	12	158	175	8,5	150	11,0
ZTT401	COI400N ###	56	68	12	196	215	8,5	190	20,2
ZTT501	COI500N ###	56	68	12	196	235	8,5	210	23,2

Мощные цилиндры, гидравлический возврат штока

КОМПЛЕКТУЮЩИЕ:

• Крышка ZTT, снижает воздействие боковых нагрузок.

МОДЕЛИ:

- *T* -модель. Цилиндр с крышкой.
- F модель с монтажными отверстиями в основании для крепления

Цилиндры ряда COI рекомендуются для использования в прессовальных установках, требующих большого количества рабочих циклов.

Для обеспечения долгого удерживания грузов мы рекомендуем установить между насосом и цилиндром управляемый обратный клапан VRP.

XAPAKTEPUCTUKU

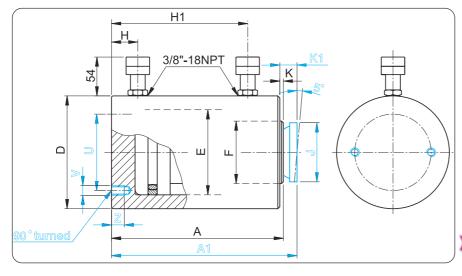
Дизайн в форме единого блока, на конце штока имеются концентрические канавки для усиления захвата. Модели с усилием больше 30 т имеют проушины, все модели имеют антикоррозионное покрытие и могут применяться в агрессивных средах.

Предохранитеьный клапан, соединенный с камерой свободного хода поршня, предотвращает перегрузки. На конце стопорной гайки имеется кольцо, предотвращающее попадание грязи.

Цилиндры могут работать при эксцентричных нагрузках.до 8 % от номинальной мощности.

СФЕРЫ ПРИМЕНЕНИЯ

Цельные гидроцилиндры рекомендуются для работ, связанных с подъемом, удерживанием и опусканием грузов.


Идеально подходят для гражданского строительства и строительства морских сооружений.

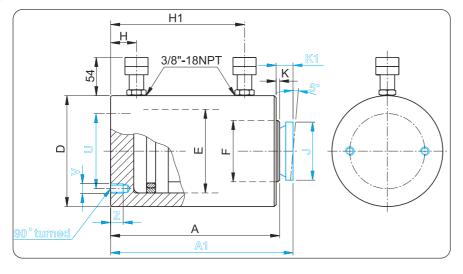
COS

Мощные цилиндры, гидравлический возврат штока

ход: 25-300 мм

Макс. раб. давление: 700 бар

Цилиндры с нестандартными характеристиками и ходом штока поршня поставляются на заказ


Усилие толкания	Усилие вытягивания	Ход	Объем масла при толкании	Объем масла при вытягивании	Модель	Мин. высота	Мин. высота со встроенной крышкой	Внешний диаметр	Диаметр поршня	Диаметр штока	Высота штуцера	Ф Ф Расстояние до штуцера <u>Ф</u>	Диаметр крышки	Выступающая часть штока	Выступающая часть штока с крышкой	Монтажные отверстия РСD	Глубина монтажных отверстий опоры	Bec
т*/кН	т*/кН	М	CM 3	СМ ³		Α	A1	D	Е	F	Н	меры Н1	J	K	KI	U	Z	КГ
50/496	5 15/144	50 100 150	354 709 106		COS50N50 COS50N100 COS50N150	149 199 249	154 204 254	1127	95	80	20	111 161 211	68	1	6	95	2 x M12 15	14 18 22
100/ 929	38/ 379	50 100 150 200	199	271 27 542 11 813 55 1084	COS100N50 COS100N10 COS100N15 COS100N20	0 271	178 228 278 328	3 175 3	130	100	28	124 174 224 274	88	2	9	130	2 x M12 17	30 38 45 52
150/ 1407	62/ 616	25 50 100 150 200 250	503 100 201 301 402	-	COS150N25 COS150N50 COS150N10 COS150N15 COS150N20 COS150N25	167 192 0 242 0 292 0 342	176 201 251 301 351	6 1 1 213 1	160	120	30	106 131 181 231 281 331	118	3	12	130	4 x M12 17	45 50 61 71 82 93
200/ 1984	76/ 748	25 50 100 150 200 250 300	709 141 283 425 567 708		COS200N25 COS200N50 COS200N10 COS200N15 COS200N20 COS200N25 COS200N30	181 206 256 306 356 406	190 215 265) 5 5 252 5	190	150	32	117 142 192 242 292 342 392	148	3	12	140	4 x M16 20	69 76 92 107 123 138 153

^{*}номинальное значение, см. кН

COS

Мощные цилиндры, гидравлический возврат штока

усилие: *50-500* **Т**

ход: 25-300 мм

Макс. раб. давление: 700 бар

Цилиндры с нестандартными характеристиками и ходом штока поршня поставляются на заказ

Усилие толкания	Усилие вытягивания	Ход	Объем масла при толкании	Объем масла при вытягивании	Модель	Мин. высота	Мин. высота со встроенной крышкой	Внешний диаметр	Диаметр поршня	Диаметр штока	Высота штуцера	Длина штуцера	Дипаметр встро- енной крышки	Выступающая часть штока	Выступающая часть штока с крышкой	Монтажные отверстия РСD	Глубина монтажных отверстий в опоре	Bec
т*/кН	т*/кН	ММ	СМ 3	см ³		Α	A1	D	Е	F	Pası H	меры <i>Н</i> 1		K	KI	U	V Z	КГ
		25	866	298	COS250N25	197	20		_			128			0 40			92
		50	173		COS250N50	222	23					153						102
		100	346	34 1 1 94	COS250N10		28					203						122
250/	85/	150	519	5 179 1	COS250N15	0 322	33	1 280	210	170	34	253	158	3	12	150	4 x M16	141
2424	835	200	692	72388	COS250N20	0 372	38	1				303					20	161
		250	865	92985	COS250N25	0 422	43	1				353						180
		300		913581	COS250N30	0 472	48	1				403						200
		25		9 330	COS300N25	203	21.					130						113
		50	207		COS300N50	228	23					155						125
		100		5 1319	COS300N10		28					205					4 x M16	148
300/ 2908	94/ 923	150		2 1979	COS300N15			7305	230	190	38	255	158	3	12	170	20	172
2908	923	200		02639	COS300N20	0.0	38					305						195
		250		873299	COS300N25	0	43					355						219
		300		643958	COS300N30		48					405						242
		25	122		COS350N25 COS350N50	210	22.					132						138
		50		4 723	COS350N50	235	24					157						153
250/	102/	100		91445	COS350N10		29		050	010	40	207	106	2	15	200	4 x M16	183
350/ 3436	103/ 1011	150 200		32168 172890	COS350N15		39	7332 7	250	210	42	257 307	196	3	15	200	20	213 242
	-	250		7 <i>2</i> 3613	COS350N25		44					357						272
		300		2 <i>6</i> 4335	COS350N23		49					407						302
		550	1-71	_5,000		700	73					707						002

^{*}номинальное значение, см. кН

Мощные цилиндры, гидравлический возврат штока

Технические характеристики

Усилие толкания	Усилие вытягивания	Ход	Объем масла при толкании	Объем масла при вытягивании	Модель	Мин. высота	Мин. высота со встроенной крышкой	Внешний диаметр	Диаметр поршня	Диаметр штока	Высота штуцера	Длина штуцера	Диаметр крышки	Выступающая часть штока	Выступающая часть штока с крышкой	Монтажные отверстия РСD	Глубина монтажных отверстий в опор <i>е</i>	Bec
т*/кН	т*/кН	мм	СМ ³	СМ ³		А	A1	D	Ε	F	Pası <i>H</i>	иеры <i>Н1</i>		K	K1	U	V Z	кг
		25	143	1 393	COS400N25	217	229)				135						165
1		50	286	3 785	COS400N50	242	254	1				160						182
1		100	572	6 157 1	COS400N10		304	1				210						215
400/	112/	150	858	38 <i>2</i> 356	COS400N15	0 342	354	356	270	230	42	260	196	3	15	230	4 x M16	248
4008	1099	200	114	513142	COS400N20	0 392	404	1				310					20	281
1		250	143	143927			454	1.				360						313
		300	171	774712	COS400N30	0 492	504	1.				410						346
1		25	176	7 540	COS500N25	225	237	7				140						212
1		50	353	4 1080	COS500N50	250	262	2				165						232
1		100	706	92160			312	2				215						271
500/	154/	150	106	033240			362	396	300	250	50	265	196	3	15	250	4 x M16	312
4948	1512	200	141	374320	COS500N20		412	?				315					20	352
		250	176	715400	COS500N25	0 450	462	?				365						391
		300	212	066480	COS500N30	D 500	512	?				415						431

^{*}номинальное значение, см. кН

Комплектующие: крышки ZTT

Обозначение моделей

COS	50	N	###	#	
ряд	Усилие	<i>N</i> = стандар	г Ход, мм	<i>F</i> = с монтаж.отверстиями	* *
	толкания, т			T = с подвижной встроенной крышкой	

^{**}Цилиндры с усилием толкания менее 100 тонн рекомендуется заказывать малыми партиями.

ΚГ

0.9

1,7

7,0

9.5

11,3

18,0

20,7

23,8

HACOCH EUROPRESS

Как выбрать насос

Чтобы сделать правильный выбор, нужно иметь соответствующую информацию о:

- Емкости камеры
- Скорости плунжера цилиндра

Выбор цилиндра на основании емкости камеры

После того, как вы подобрали наиболее подходящий цилиндр и определили объем масла для хода,необходимо выбрать подходящий насос, исходя из заданного объема масла.

Объем можно рассчитать путем 1.1 умножения объема масла, необходимого для выбранного цилиндра(-ов). Для цилиндров двустороннего действия объем масла вычитается из объема масла, необходимого для выдвижения цилиндра. Наконец, необходимо учесть объем масла, требуемого для заполнения гибких шлангов, т.е. 32 см3 на 1 метр длины. Приведенные ниже таблицы призваны облегчить эту операцию.

Закрашенные зоны представляют максимальные значения для каждого типа насоса.

Цилиндры одного назначения

Хол						Усилие, т					
Ход мм	5	10	20	25	30	50	06	100	150	200	250
15											
25											
50											
75	PF120										
100											
125											
150											
175											
200											
225											
250			PL131	PL141							
275	PS100										
300	PS110										
325											
350											
	PL130	PS101	DI 100	DI 140 I	DI 160	חו ז	164	DI 160	DV/1010	DV40	20
	PL140	PS111	PL132 PL142 PL162			PL1	04	PL168	PV1810	PV182	20

Цилиндры двустороннего действия

Von						Усилие, т					
Ход ММ	5	10-15	25	30	50	60	100	15	0 20	0 25	o зс
25											
50											
75											
100											
125											
150											
175											
200											
225											
250											
275											
300											
325											
350											
			PL2	262			PL264	PL268	PV2810	PV2	820

Hacocы EUROPRESS

Выбор насоса на основании скорости плунжера цилиндра

Ручные насосы

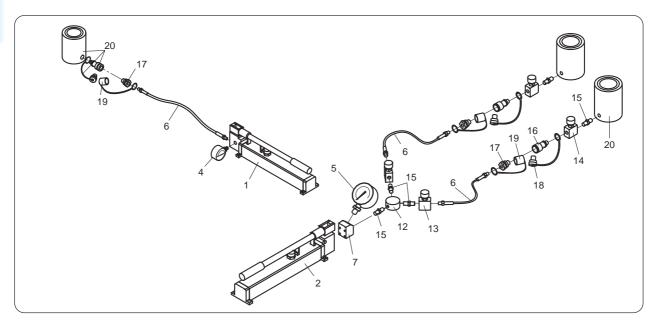
Данные, приведенные в таблице, отражают ход поршня в мм для каждого типа ручных насосов.

Тип	Давлени	Э				Ус	илиє	e, T				
насоса	ступень	5	10	20	25	30	5	06	100	150	20	0 25
PS100 PL130	Одноступенчатый	1,4	0,6	0,4	0,3	0,2	0,1	-	-	-	-	-
PF120	Одноступенчатый	3,1	1,4	0,8	0,7	0,5	0,3	0,3	0,2	-	-	-
PS101	Одноступенчатый	3,3	1,4	0,8	0,7	0,5	0,3	0,3	0,2	-	-	-
PL13#	Одноступенчатый	4,8	2,1	1,2	1,0	0,8	0,5	0,4	0,3	0,2	-	-
PS110	1°	14,6	6,5	3,6	3,1	2,3	1,5	-	-	-	-	-
PS140	2°	1,4	0,6	0,4	0,3	0,2	0,1	-	-	-	-	-
PS111	1°	14,6	6,5	3,6	3,1	2,3	1,5	1,2	0,8	-	-	-
73777	2°	3,3	1,4	0,8	0,7	0,5	0,3	0,3	0,2	-	-	-
PL14#	1°	19,4	8,6	4,8	4,1	3,1	1,9	1,6	1,0	-	-	-
1 L 14#	2°	3,1	1,4	0,8	0,7	0,5	0,3	0,3	0,2	-	-	-
PL16#	1°	45,3	20,1	11,3	9,6	7,2	4,5	3,8	2,4	1,6	-	-
7 2 70#	<i>2</i> °	4,2	1,9	1,1	0,9	0,7	0,4	0,4	0,2	0, 1	-	-
PV18#	1°	176,8	78,6	44,2	37,7	28,3	17,6	14,8	9,4	6,2 -	4,4	3,6
1 1 10#	2°	6,8	3,0	1,7	1,4	1,1	0,7	0,6	0,4	0,2	0,2	0,1

Ручные и ножные насосы

Модульные электрические насосы

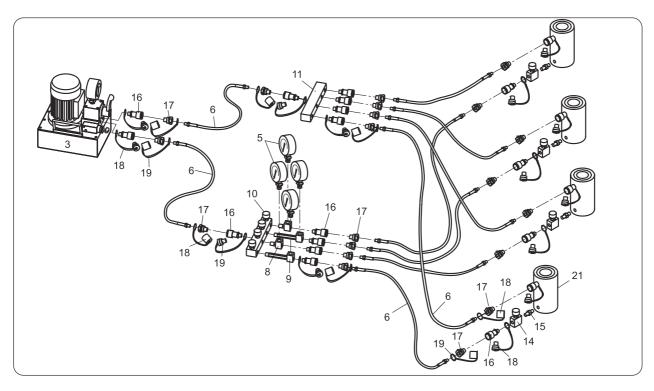
Насосы с электроприводом


Данные, приведенные в таблице, отражают скорость хода поршня в мм/сек

Тип	Давлени	e						Ус	илие	. T						
насоса	ступень		10	20	25	30	05		100	150	200	250	30	0 3	50 4	00 50
MD	1°	49,5	22,0	12,4	10,5	7,9	4,9	4,2	2,6	1,7	1,2	1,0	0,8	0,7	0,6	0,5
IVID	2°	9,4	4,2	2,4	2,0	1,5	0,9	0,8	0,5	0,3	0,2	0,2	0,2	0,1	0,1	0, 1
MD#H	1°	141,5	62,9	35,4	30,1	22,6	14,1	11,9	7,5	5,0	3,5	2,9 2	2,4	2,0	1,7	1,4
IVID#П	2°	14,1	6,3	3,5	3,0	2,3	1,4	1,2	0,8	0,5	0,4	0,3	0,2	0,2	0,2	0,1
Α	1°	21,2	9,4	5,3	4,5	3,4	2,1	1,8	1,1	0,7	0,5	0,4	0,4	0,3	0,3	0,2
A	2°	10,6	4,7	2,7	2,3	1,7	1,1	0,9	0,6	0,4	0,3	0,2	0,2	0,2	0, 1	0,1
В	1°	110,8	49,3	27,7	23,6	17,7	11,1	9,3	5,9	3,9	2,8	2,3	1,9	1,6	1,4	1, 1
Ь	2°	10,6	4,7	2,7	2,3	1,7	1,1	0,9	0,6	0,4	0,3	0,2	0,2	0,2	0, 1	0, 1
С	Одноступенчатый	21,2	9,4	5,3	4,5	3,4	2,1	1,8	1,1	0,7	0,5	0,4	0,4	0,3	0,3	0,2
_	1°	42,4	18,9	10,6	9,0	6,8	4,2	3,6	2,3	1,5	1,1	0,9	0,7	0,6	0,5	0,4
D	2°	21,2	9,4	5,3	4,5	3,4	2,1	1,8	1,1	0,7	0,5	0,4	0,4	0,3	0,3	0,2
Н	1°	56,6	25,2	14,1	12,1	9,1	5,6	4,7	3,0	2,0	1,4	1,2	1,0	0,8	0,7	0,6
П	<i>2</i> °	21,2	9,4	5,3	4,5	3,4	2,1	1,8	1,1	0,7	0,5	0,4	0,4	0,3	0,3	0,2
Е	1°	221,6	98,5	55,4	47,2	35,5	22,1	18,6	11,8	7,8	5,5	4,5 3	,8	3,2	2,7	2,2
E	<i>2</i> °	21,2	9,4	5,3	4,5	3,4	2,1	1,8	1,1	0,7	0,5	0,4	0,4	0,3	0,3	0,2
F	Одноступенчатый	42,4	18,9	10,6	9,0	6,8	4,2	3,6	2,3	1,5	1,1	0,9	0,7	0,6	0,5	0,4
G	1°	110,8	49,3	27,7	23,6	17,7	11,1	9,3	5,9	3,9	2,8	2,3	1,9	1,6	1,4	1,1
G	2°	42,4	18,9	10,6	9,0	6,8	4,2	3,6	2,3	1,5	1,1	0,9	0,7	0,6	0,5	0,4
L	Одноступенчатый	37,7	16,8	9,4	8,0	6,0	3,8	3,2	2,0	1,3	0,9	0,8	0,6	0,5	0,5	0,4
Т	1°	235,7	104,8	59,0	50,2	37,7	23,5	19,8	12,6	8,3	5,9	4,8 4	1,0	3,4	2,9	2,4
'	2°	42,4	18,9	10,6	9,0	6,8	4,2	3,6	2,3	1,5	1,1	0,9	0,7	0,6	0,5	0,4
V	1°	235,7	104,8	59,0	50,2	37,7	23,5	19,8	12,6	8,3	5,9	4,8 4	1,0	3,4	2,9	2,4
V	2°	58,9	26,2	14,7	12,6	9,4	5,9	4,9	3,1	2,1	1,5	1,2	1,0	0,8	0,7	0,6

Гидравлическая система EUROPRESS 🧐

Устройство гидравлической системы



- 1. Ручной насос с боковым манометром
 - 2. Ручной насос с фронтальным манометром
 - 3. Блок питания
 - 4. Манометр G106L
 - 5. Манометр G10
 - 6. Шланг SN#, 3/8" NPT

 - 8. Блок манометра RP50
 - 9. Блок манометра RP502
 - 10. Четырехсторонний клапан VRF384
 - 11. Коллектор RM387

- 12. Радиальный коллектор RK383
- 13. Игольчатый клапан VRF38
- 14. VRU38 распределительный клапан
- 15. Ниппель RN38
- 16. Главный штуцерК73F
- 17. Вспомогат. штуцер К73М
- 7. Переходник для манометраZPF12 (фланцевый) 18. Пылезащитный колпачок глав. штуцера K73C
 - 19. Пылезащитный колпачок вспом. штуцера K73D
 - 20. Цилиндр одностороннего действия
 - 21. Цилиндр двустороннего действия

Гидравлические насосы

Гидравлические насосы, номенклатура

Ручные и ножные насосы

PL стр. 46 PV стр. 51 PS стр. 50 PF стр. 52

• Пневмогидравлические насосы

MLP стр. *53*

Компактные электрические насосы

MC стр. *56 MDW* стр. *60 MD* стр. *58*

Модульные электрические насосы стр. 62

ME стр. 64 *MP* стр. 67 *VMM-VMEp.* 69 *MM* стр. 66 *MS* стр. 68 *VMS-VMPp.* 70 Комплектующие стр. 71

Синхронные подъемные системы

Split Flow ctp. 74 Synchrolift ctp. 72

PL

Легковесные ручные насосы - 700 бар

КОМПЛЕКТУЮЩИЕ:

- ZPS12 Адаптер для манометра G10 с резьбовым соединением.
- ZPF12 Адаптер для манометра G10 с фланцевым соединением.
- ZPF121 Адаптер для манометра G10 со штуцерным соединением.

МОДЕЛИ:

• G модель. Насос с манометром G106L, установленным на корпусе (кроме ряда PL26#).

Чтобы подобрать нужную модель насосы, см. раздел "Как выбрать насос"

СТАНДАРТ:

• Боковой порт 1/4" NPT для подсоединения манометра к насосу (кроме моделей ряда PL26#).

На заказ поставляются модели, работающие на других видах жидкостей.

XAPAKTEPИСТИКИ

Ручные насосы PL очень легкие, вес некоторых моделей на 50 % ниже по сравнению с традиционными моделями. Ручные насосы PL потребляют минимальное количество масла на каждый ход и требуют небольшого усилия руки при максимальном рабочем давлении.

Насосы изготовлены из легких металлических сплавов, обычно используемых в авиационной промышленности, и характеризуются стойкостью к механическому износу. Насосы PL могут работать в вертикальном положении с направленной вниз головкой. Все модели комплектуются:

- настраиваемым обратным клапаном.
- боковым входом для крепления манометра (кроме моделей ряда PL26#).
- ручкой и монтажными отверстиями. Камеры объемом 0,7 - 1,3 – 2,4 -4.3 - 8.0 л.

СФЕРЫ ПРИМЕНЕНИЯ

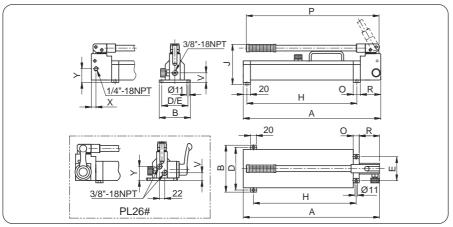
• Ряд PL13#

Одноступенчатые насосы емкостью камер 0,7—1,3—2,4 л, цилиндры одностороннего действия с коротким ходом и малым/ средним потреблением масла.

• Ряд PL14#

Двухступенчатые насосы с емкостью камер 0,7 – 1,3–2,4 л, обратным клапаном первой ступени насоса, для цилиндров одностороннего действия со средним ходом и средним потреблением масла.

• Ряд PL16#


Двухступенчатые насосы, емкость камер 2,4 — 4,3— 8,0 л, выпускной клапан для облегчения засасывания в камеру второй ступени; для цилиндров одностороннего действия с длинным ходом и большим потреблением масла.


• Ряд PL26#

Двухступенчатые насосы, емкость камер 2,4 — 4,3— 8,0 л, выпускной клапан для облегчения засасывания в камеру второй ступени; четырехсторонний клапан, для цилиндров двустороннего действия с длинным ходом и большим потреблением масла.

Легковесные ручные насосы - 700 бар

Емкость: *0,7-8,01*

Расход масла

<u>на1 ход:</u> 1,0-3,4 см ³

Макс. давление: 700 бар

Технические характеристики

	VI IVI	100	IVIC		ipai	(10)	7710	ГИКИ													
Давление 1 ступень	Давление 2 ступень	Расход масла 1 ступень	Расход масла 2 ступень	Усилие	Совместимые модели	Емкость камеры	Объем масла	Модель					P	азмеן	ΩЫ, М	М					Bec
бар	бар	СМ 3	СМ	Н	н	Л	Л		А	В	D	Е	Н	J	0	Р	R	V	X	Υ	КГ
			1,0	260	действия	0,7	0,5	PL130	337	110	90	90	275	126	67	337	-	30	16	44	3,2
-	700	- [3,4	340	эйс-	1,3	1,	PL131	560	110	50		460	149	20	543	80	33	20	46	5,0
			0,4	040		2,4	2,	PL132	300	125	105	105	400	169	20	343	00	54	20	67	6,5
20		10,3	1,0	340	тор	0,7	0,5	PL140	337	110	90	90	275	126	67	337	-	30	16	44	3,2
30	700	13,7	2	2 350	одностор	1,3	1,	PL141	560	110	30		460	149	20	543	80	33	20	46	5,0
		13,7	۷,۷	. 330	0	2,4	2,	PL142	300	125	105	105	400	169	20	340	00	54	20	67	6,5
						2,4	2,	PL162	565	125	105		460	169							7,0
70	700	32	3,0	340		4,3	3,8	PL164	575	190	170	105	440	170	20	543	85	33	20	56	11,2
						8,0	6,6	PL168	655	260	240		510	176							16,7
					ор. Вия	2,4	2,	PL262	565	125	105		460	169							7,8
70	700	32	3,0	340	двустор. действия	4,3	3,8	PL264	575	190	170	105	440	176	20	543	85	27	-	57	12,0
					AB) Aei	8,0	6,6	PL268	655	260	240		510	170							17,5

Комплектующие: адаптеры для манометров ZPS – ZPF

~.0	Модель	Для использования с	а	b	С	d	е	КГ
	ZPS12 (резьбовое соединение)	РЯД PL13# PL14# PL16#	50	30	48	3/8" NPT	1/2"BSP	0,25
	<i>ZPF12</i> (фланцевое соединение)	РЯД <i>PL16</i> #	45	45	60	3/8" NPT	1/2"BSP	0,90
	ZPF121 (штуцерное соединение)	РЯД <i>PL2</i> 6#	83	30	70	-	1/2"BSP	0,37

ОБОЗНАЧЕНИЕ МОДЕЛИ

PL	13	#	#
РЯД	тип насоса	емкость камеры - л	функции

Легковесные ручные насосы - 1000 - 1600 - 2800 бар

КОМПЛЕКТУЮЩИЕ:

- Адаптер ZPF14 для манометра с фланцевым соединением (модели 16#10 и 16#16 PL).
- Адаптер ZPF73 для манометра с фланцевым соединением (модели ряда 16#28 PL)
 - ZPD16 двойной фланцевый
- Переходник ZPS53 для игольчатого клапана G10 для разделения испытаний и кал и бровки. потока, манометр с резьбовым соединением (для 16#10 и16#16 (PL16#10)
 - ZPD28 фланцевый двусторонний игольчатый распределительный клапан (для моделей ряда 16#28 PL).

XAPAKTEPИСТИКИ

Эти PL насосы имеют все характеристики насосов с раб. давлением 700 бар, но разработаны для работы при более высоком давлении (от 1000 до 2800 бар).

Все модели имеют:

- две ступени
- байпасный клапан
- настраиваемые обратные клапаны
- второй разъем (только для ряда PL16#28).
- ручку и монтажные отверстия. Диапазон емкости камер - 2,4 — 4,3 — 8.0 л.

Насосы можно также использовать в вертикальном положении с направленной вниз головкой.

СФЕРЫ ПРИМЕНЕНИЯ

• Ряд PL16#10

Операции по извлечению ч-л, растяжению и в лабораторных испытаниях.

• Ряд PL16#16

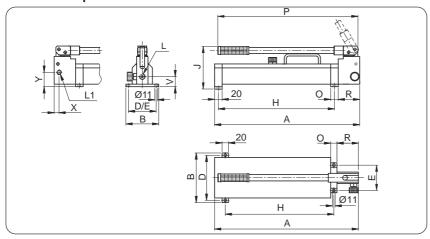
Для подъемных механизмов.

• Ряд PL16#28

Специально предназначены для предварительного натяжения опор, разрушающих испытаний и калибровки.

Во избежание перегрузок рекомендуется всегда использовать манометр

Модельный ряд16#28: насосы снабжены специальным устройством ® позволяющим работать на жидкостях с вязкостью до 1200 сСт.



При выборе соединений и шлангов следует выбирать позиции, предназначенные для работы при давлении от1000 до 2800 бар.

PL

Легковесные ручные насосы - 1000 – 1600 – 2800 бар

Емкость камеры: *2,4-8,0* л

Расход масла

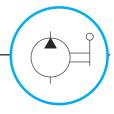

на 1 ход, л/с: *0,9-1,6* **cm**³

Макс. давление: 2800 бар

Технические характеристики

10/	ZUNI	100	IVIC	val	Jaki	CP	<u>истики</u>	_													
Pressure 1 ступень	Давление 2 ступень	Расход масла 1 ступень	Расход масла 2 ступень	Усилие	Емкость камеры	Объем масла	Модель						Разі	меры	, MM						Bec
бар	бар	СМ 3	СМ	Н	л	л		А	В	D	E	Н	J	L	L1	Р	R	V	Х	Y	КГ
					2,4	2, 1	PL1621	565	12:	5 1	05	460	169	4 /411							7,0
30	1000	32	1,6	370	4,3	3,8	PL16410	575	190) 1	70105	440	176	1/4"	-	543	85	33	-	-	11,2
					8,0	6,6	PL1681	655	260) 2	40	510	170	BSP							16,7
					2,4	2, 1	PL16216	565	12:		05	460	169	1/4"							7,0
20	1600	32	1,6	460	4,3	3,8			190) 1	70/05	440	176	BSP	-	543	85	33	-	-	11,2
					8,0	6,6			260) 2	40	510									16,7
					2,4	2, 1	PL1622		12:	5 1	05	460	169	3/4"- 1	B/4"- 1	6					7,0
20	2800	32	0,9	450	4,3	3,8			190) 1	70105	440	176	·	UNF	543	85	33	20	56	11,2
					8,0	6,6	PL1682	655	26) 2	40	510	170	0/1/	OIVI						16,7

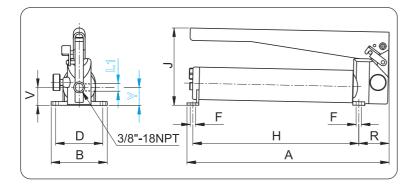
Комплектующие: адаптеры для манометров ZPF - ZPS – ZPD клапаны



Обозначение модели

PL	16	#	10 (16/28)
Ряд	Тип насоса	Емкость камеры - л	давление 1000 бар (1600/2800)

Стальные ручные насосы 400 – 700 - 1000 бар



ВАРИАНТЫ:

F модель, насос с отверстием в головке и манометром G106L.

Емкость камеры: *0,42-0,8* л

Расход масла

ход, на 1 ход, л/с: *1,0-2,3* cm ³

Макс. давление: 1000 бар

ХАРАКТЕРИСТИКИ

Мощные и легкие в употреблении стальные ручные насосы, требующие незначительного. усилия. Представлено шесть моделей, одно и двухступенчатые, с тремя диапазонами давления, 400 – 700 - 1000 бар. Эти насосы могут работать в вертикальном положении с направленной вниз головкой. Все модели оснащены:

- настраиваемым обратным клапаном
- широкой ножкой для удобства монтажа
- механизмом ручки для транспортировки

Емкость камеры варьируется от 0,42 – 0,8 л в зависимости от модели.

ПРИМЕНЕНИЕ

Эти насосы идеально подходят для цилиндров одностороннего действия с малым или средним потреблением масла.

Технические характеристики

167	КНИ	460	кие	Xap	Jakre	рис	, I VIK												
Pressure 1ступень	Давление 2 ступень	Расход масла 1 ступень	Расход масла 2 ступень	Усилие	Совместимые модели	Емкоасть камеры	Объем мала	Модель				F	азме	ры, м	1M				Bec
бар	бар	CM ^β	СМ 3	ĺ		ë	ë		А	В	D	F	Н	J	L1	R	V	Y	КГ
	700 1000		1,0	280 380		420	300	PS100 PS1001	340				280						3,2 3,2
-	700	-	2,3	390	одност.	800	700	PS101	565	0.5	00		505	10	1/4" 10 NDT		00.5		4,5
	400		2,3	350		420	300	PS1000	4 340	95	80	9		13	NPT	. 50	32,5	32,5	3,2
20	700	10,3	1,0	380		420	270	PS110	340				280						3,2
20	700	10,3	2,3	410		800	650	PS111	565				505						4,5

Обозначение модели

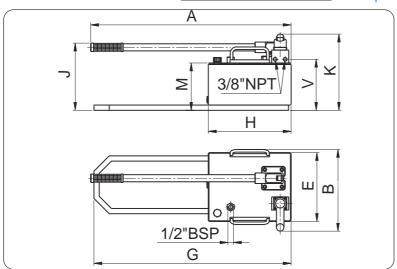
PS	10	0	##	#
ряд	Тип насоса	Емкость камеры, л	Давление, если отличает	ся от 700 бар Функции

PV

Стальные ручные насосы с большим расходом масла - 700 бар

Емкость камеры: *9,3-19,4* л

Расход масла


на 1 ход, л/с: *4,8* см ³

Макс. давление: 700 бар

МОДЕЛИ:

• Моделъ G Насос с манометром G10 (PV # G)

ХАРАКТЕРИСТИКИ

Двухступенчатый ручной насос с автоматическим переключением с первой ступени на вторую, требующие минимального усилия для достижения максимального рабочего давления.

Все модели комплектуются:

- обратным клапаном
- ручкой
- 1/2" BSP коннектором для манометра

Емкость камеры варьируется от 10 до 20 л, трехсторонний клапан, четырехсторонний регулируемый обратный клапан.

Соблюдайте технику безопасности 120

Технические характеристики

Давление 1ступень	Давление 2 ступень	Расход масла 1 ступень	Расход масла 2 ступень	Усилие	Совмести- мые модели	Емкость камеры	Объем масла <i>Volume</i>	Модель										Bec
	бар	CMB	CMB	Н		л	Л		А	В	Е	G	Н	J	K	М	V	КГ
					0.5110.0500	9,3	7,7	PV1810		261		750	315	257	290	180	194	22
					одностор. действия	19,4	16	PV1820				-	650	245	278	168	182	27
20	700	125	4,8	400		9,3	7,7	PV2810	763		245	750	315	257	290	180	194	22
-	, 00	,,,,	.,0	,,,,	двустор. лействия	19,4	16	PV2820	703	313	240	-	650	245	278	168	182	27
					двустор.	9,3	7,7	PV4810		010		750	315	257	290	180	194	22
					действия с клапаном	19,4	16	PV4820				-	650	245	278	168	182	27

Легковесные ножные насосы из сплавов – 700 бар

Емкость камеры: *0,24-0,5* л

Расход масла

XAPAKTEPUCTUKU

модели.

2,2 cm ³ на 1 ход:

Макс. давление: 700 бар

Эти алюминиевые насосы легковесны, удобны и легки в эксплуатации при

Имеются одно- и двухступенчатые

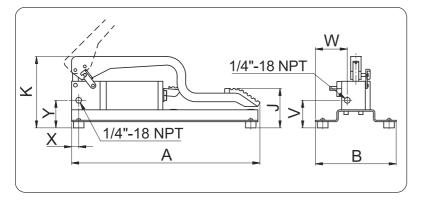
СТАНДАРТ:

• разъем 1/4" NPT для подключения манометра к головке насоса

МОДЕЛИ:

• С модель. Насос с мано на корпусе (кроме ряда PL26#).

Этот тип насоса комплектуется:


одновременной мощности.

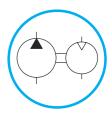
- настраиваемым обратным клапаном.
- стальной опорной частью с антискользящим покрытием, которое можно снять, если насос устанавливается на горизонтальную поверхность.

метром G106L, установленным Разъем для манометра 1/4" NPT на головке насоса

СФЕРЫ ПРИМЕНЕНИЯ

Этот тип насоса предназначен для работы с мелкими инструментами для гнутия, сверления и прессования труб и листовой стали. Насос рекомендуется в случаях, когда оператору нельзя занимать руки.

Технические параметры


Pressure 1	авлен ступе	Расход масла 1 ступень	Расход масла 2 ступень	Усилие на педаль	Совмести- мые модели	Емкость камеры	Объем масла	одель				Разме	еры, мм	1			eight
ба	р бар	см 3	СМЗ	Н		л	Л	Ĭ	Α	В	J	K	V	Х	Υ	W	кг
-	700	-	2,2	490	одностор	0,24	0,19	PF120	400	200 -	56-350	155	56	15	56	83	35
20		10,3	2,2	560	действия		0,40	PF150	400	200	30-330	175	50	15	50	<i>7</i> 5	4,5

MLP

Пневмогидравлические насосы - от 80 до 2100 бар

Емкость камеры: *2,4-5-10* л

80-350-700 Макс. давление: 1000-2100 бар

Давление воздуха

2,8-8,5 бар на входе:

Расход воздуха: *500-2100* л/мин

Пневмогидравлические насосы

КОМПЛЕКТУЮЩИЕ:

- ZML14 редукционный клапан для подачи воздуха
- нагнетательный клапан ZMB7, настраиваемый для MLP21# для повышения давления (соотношение 4:1). Вход 3/8" NPT, выход 3/4" -16 UNF.
- Адаптер RP52 для манометра G106L

СТАНДАРТ:

- С рама для модели MLP23KAG
- G манометр для модели MLP23KAG
- редукционный клапан для подачи воздуха для MLP23KAG

ХАРАКТЕРИСТИКИ

отличаются легким весом и многофункциональностью. Испытания подтвердили их надежность при выполнении сложных задач благодаря уникальному дизайну (ряды SA, MA, HÁ, TA, имеющую пластик снаружи и металлический сплав внутри). Предлагается 5 множителей шкалы: 19:1, 60:1, 122:1, 196:1, 345:1 для максимального давления в 80, 350, 700, 1000, 2100 бар соответственно. Все насосы (кроме модели К, имеющей редукционный клапан) снабжены клапаном максимального давления, не регулируемым извне. Внешнее давление можно отрегулировать путем

воздуха. Четыре базовых модели включают в себя: •MLP0 с выходами Р иТ,

изменения внутреннего давления

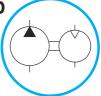
со встроенными клапанами

•MLP1с плитой Cetop 3 •MLP2 с трехсторонним клапаном (с педалью) для цилиндров одностороннего действия

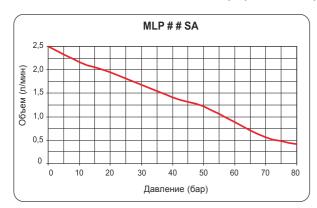
• MLP4 с четырехсторонним клапаном (с рычагом) для цилиндров

двустороннего действия. Базовые модели могут комплектоваться дополнительными элементами. См. таблицу на стр. 54.

Камера емкостью 2,4 л изготовлена из пластика, а камеры на 5 и 10 л - из стали.


СФЕРЫ ПРИМЕНЕНИЯ

Обменные системы на станках (80 бар), гидравлические захваты (80 и 350 бар), промышленность (350 бар), для подъема грузов, обслуживания, автомобильный сектор (700 бар), в паре болтовыми натяжными цилиндрами, гидравлические гайки (1000 бар), для лабораторных испытаний и испытаний на разрушение (2100 бар).


Пневмогидравлические насосы - от 80 до 2100 бар

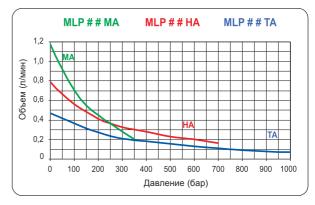
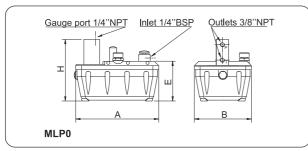


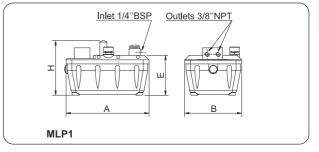
Таблица параметров моделей

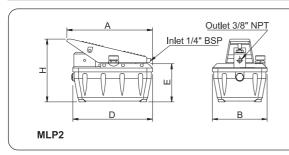
				Баз	овая модель	
	Описание	Модель	MLP0	MLP1	MLP2	MLP4
ера	Камера емкостью 2,4 л	1	•	•	•	•
Камера	Камера емкостью 5 л	2	•	•	•	•
ra)	Камера емкостью10 л	3	•	•	•	•
Эаб. давление (расход маста)	Рабочее давление 2100 бар (0,65 – 0,05 л/м	ин <i>КА</i>	-	-	•	-
acxo/	Рабочее давление 1000 бар (0,5 – 0,1 л/мин) TA	-	-	•	-
ние (р	Рабочее давление 700 бар (0,8 – 0,16 л/ми	1) <i>HA</i>	•	-	•	
тавле	Рабочее давление 350 bar (1,2 – 0,2 л/ми	i) <i>MA</i>	•	•	•	•
Pa6. µ	Рабочее давление 80 бар (2,5 – 0,3 л/мин)	SA	•	•	•	•
Z	Пульт управления подачей воздуха	В	-	-	•	-
доп. функции	Встроенный манометр	G	•	-	-	-
	Пульт дистанционного управления	R	-	-	•	•

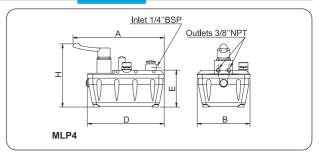
Графики, иллюстрирующие расход

Обозначение модели


Базовая модель	Камера	Рабочее давление	Доп. функции
M.P2	1	HA	R

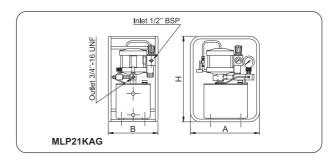

MLP


Пневмогидравлические насосы - от 80 до 2100 бар



Размеры и характеристики

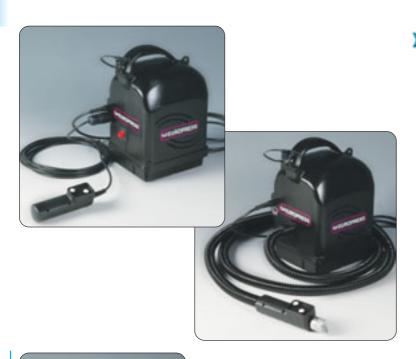
Базовая модель С	овместимые цилинд	ры Камера	Объем масла	Модель	Разм	еры, і	ΜМ		Bec
		л	Л		А	В	E	H	ΚΓ
	в зависимости от	2,4	1,9	MLP01##	280	190	136	201	4,7
С блоками Р и Т	типа клапана	5	4	MLP02##	315	270	156	221	13,1
		10	8	MLP03##	420	385	156	221	20,5
		2,4	1,9	MLP11##	280	190	136	171	4,7
С опорной плитой Cetop 03	в зависимости от типа клапана	5	4	MLP12##	315	270	156	191	13,1
		10	8	MLP13##	420	385	156	191	20,5



Размеры и характеристики

Базовая модель С	овместимые цилинд	ры Камера	Объем масла	Модель	Размеры, мм					Bec
		л	л		Α	В	D	E I	Ŧ	кг
		2,4	1,9	MLP21##	300	190	280	136	3 22	0 5,5
3/3 клапан с педалью	одностороннего действия	5	4	MLP22##	325	270	315	156	23	7 13,9
		10	8	MLP23##	420	385	410	156	23	7 21,3
		2,4	1,9	MLP41##	335	190	280	136	24	0 5,1
3/3 клапан с ручно регулировкой	й двустороннего действия	5	4	MLP42##	350	270	315	156	25	7 13,5
		10	8	MLP43##	420	385	410	156	25	7 20,9

Размеры и характеристики


Бак для масла	Объем масла	Модель	Pas	вмерь	ы, М <i>М</i>	Bec
Л	л		Α	В	Н	ΚΓ
10	8	MLP21KA	G 495	325	580	30

MC

Микроблоки питания - 700 бар

КОМПЛЕКТУЮЩИЕ:

• Ремень ZMT для переноски

ДОП. ФУНКЦИИ:

• Блоки питания MC5# с давлением 500 бар.

ХАРАКТЕРИСТИКИ

Компактные блоки питания одностороннего действия предназначены для мелких инструментов.

Они характеризуются портативностью, малым шумом, и могут работать при давлении до 700 бар.

Все модели комплектуются:

- однофазным электромотором 230 В 50 Гц 0,25 кВт
- 3-сторонним 2хпозиционным соленоидом.
- обратным клапаном
- питающим кабелем длиной 2,5 м
- ручкой для переноски
- индикатором уровня масла
- крышкой мотора
- пультом дистанционного управления с радиусом действия 3 м Модель МС70 поставляется без пульта дистанционного управления для встроенных регулировочных устройств.

Возможна поставка блоков птания с электромоторами различного напряжения на заказ.

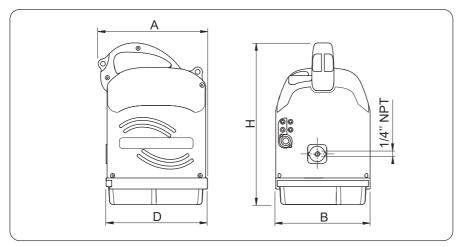
ПРИМЕНЕНИЕ

Микронасосы применяются для контроля мелких инструментов типа мини-прессов, ножниц и гайкорезов.

Насосы характеризуются компактными размерами, малым весом (только 9 кг) и легкостью эксплуатации.


Пожалуйста, помните, что, эти насосы не предназначены для подъемных работ и натяжения. Для этого обратитесь к сериям Миди или Модульных нососов.

Таблица расхода


Гайкорезы серии US в паре с микроблоками питания образуют очень практичную и эффективную систему

Микроблоки питания - 700 бар

Емкость камеры: 1,0 л

Расход при 700 бар: *0,21* л/мин

Наряжение питания: *0,25* kВт

Макс. давление: 700 бар

Технические параметры

Макс. давление	Расход при мин. давлении	Расход при макс. давлении	Емкость камеры	Объем масла	Модель	Размеры, мм			Bec	
бар	л/мин	л/мин	л	Л		Α	В	D	Н	КГ
					MC70					
700	0.22	0.01	1.0	0.00	MC71	227	197	211	336	9
700	0,32	0,21	1,0	0,80	MC72	221	197	211	330	9
					MC73					

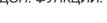
Рабочие характеристики

Модель	Совместимые моде	ли Дистанционное управление	Обозначение
MC70		Рассчитан на пульт ДУ с 1 или 2 кнопками (не входит в комплект поставки)	-
MC71	Одностороннего — действия [Е	Возвратно-поступательное движение (1 кнопка)	A M T
MC72		Поступат. движ. – Удержание- Возврат	A MATINA P T
MC73		Возвратно-поступательное движение (1 кнопка) Встроенный ДУ на конце соединения шланга	A M P T

Обозначение модели

MC	7	#
ряд	Давление	Тип управления

Блоки питания Midi для гидросистем- 700 бар



ДОП. ФУНКЦИИ:

Пульт ДУ с радиусом действия

3 м для приведения в движение двигателя в блоке питания с клапанами с ручным регулированием МDМ##.

• Модель R КОМПЛЕКТУЮЩИЕ: • RP52, блок манометра

• Модель Н

Блок питания с насосом большой производительности: 1-я ступень 6,0 л/мин 2-я ступень 0,6 л/мин Двигатель 1,1 кВт

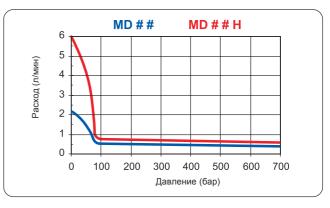
• Модель Ј с регулируемым редукционным клапаном

Модели с трехфазным электродвигателем или пневмодвигателем также имеются в наличии. Возможна поставка блоков с другими размерами.

ХАРАКТЕРИСТИКИ

Компактные размеры и малый вес делают блоки питания оптимальными по техническим характеристикам. Большой выбор клапанов с ручным и электрическим регулированием позполяют использовать насосы вместе с цилиндрами одно- и двустороннего действия. Все модели имеют:

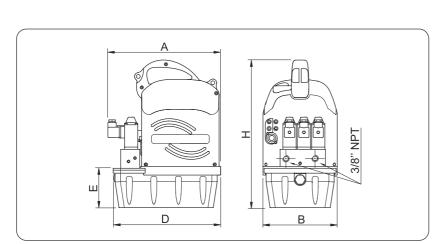
- однофазный электродвигатель 230 В -50Гц и 0,75 кВт, 2800 об./мин
- пластиковый корпус
- двухступенчатый поршневой насос.
- №-х и 4-хсторонние клапаны ручного и электрического регулирования
- редукционный клапан
- электрический кабель длиной 5 м
- Пульт ДУ с радиусом действия 3 м (для электрич. клапанов)
- ручку для переноски
- датчик уровня масла

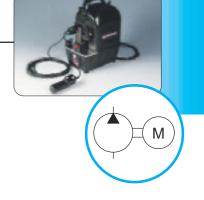

Блоки питания с электродвигателями различного напряжения поставляются по заказу.

ПРИМЕНЕНИЕ

Идеальны для цилиндров среднего размера, и инструментов благодаря мобильности и отсутствию шума.

Подходят для дыропробивных прессов, режущих инструментов, мелких прессов трубогибочных станков, разделителей и т.д.


График расхода



MD

Блоки питания Midi для гидросистем- 700 бар

Емкость камеры: 2,6 л

Расход при 700 бар: *0,4-0,6* л/мин

Мощность: *0,75-1,1* кВт

Макс. давление: 700 бар

Техническпие характеристики

Расход 1 ступ.	ц масла 2 ступ.	Давле 1 ступ.	ение 2 ступ.	Емкость камеры	Объем масла	Модель	Размер		азмеры,	ММ		Bec
л/мин	л/мин	бар	бар	Л	л	2	Α	В	D	E	Н	КГ
						MDM21	310					16
						MDM31						16,3
2,1	0,4	4 6	5 7	00 2,6	2,4	MDM41	349					16,3
-, .	,			_, _	_, .	MDM42		197	284	119	390	16,5
						MDE21F	}					16,3
						MDE22F	298					16,3
						MDE41F	•					18,5

Таблица функций

Модель	Совместимые модели	Функция клапана	Symbol
MDM21	Одностор.	Возвратно-поступательное движение	A A P T
MDM31	действия	Поступ. движ Удержание – Возврат	A P T
MDM41	_	Поступ. движ Удержание – Возврат	A B P T
MDM42	Двустор. действия	Поступ. движ Удержание с контролем состояния — Возврат	
MDE21R	Одностор.	Возвратно-поступательное движение	A M P T
MDE22R	действия	Поступ. движ Удержание – Возврат	A M T P T
MDE41R	Двустор. действия	Поступ. движ Удержание — Возврат	A B P T

Обозначение модели

٨	1D	M21	R	#
	ряд	Тип клапана	Пульт ДУ	 Стандартный насос Н Высокопроизв. насос

Гидравлические блоки питания для гайковертов - 700 бар

См. соответствующий раздел по гайковертам

Гибкие шланги: для подсоединения к гайковерту необходимо два шланга, каждый должен иметь муфты на концах SQ##FM.

ХАРАКТЕРИСТИКИ

Специально предназначенные для гайковертов, эти блоки совмещают в себе максимальную производительность компактные размеры и малый вес.

Компактноые размеры и малый вес позволяют переносить блоки. В комплект поставки включается ручка для переноски или защитная рама

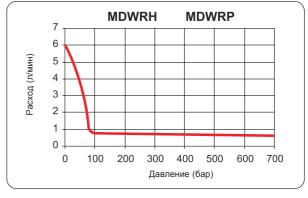
В комплект всех моделей входит:

- соед. разъем 1/4 NPT
- двухступенчатый насос с поршнем
- клапан регулирования давления
- манометр
- обратный клапан
- пульт ДУ с радиусом действия 3 м
- силовой кабель 5 м
- пластиковая камера
- ручка
- датчик уровня масла

Имеется три модели: MDWR с насосом 2,1/0,4 л/мин и однофазным электродвигателем, 0,75 кВт

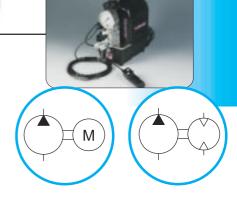

MDWRHc насосом 6/0,6 л/мин и однофазным электродвигателем, 1,1 кВт

MDWRP с насосом 6/0,6 л/мин и пневмодвигатель 1,1 кВт


Электродвигатели различного напряжения поставляются по заказу.

СФЕРА ПРИМЕНЕНИЯ Идеальны для гайковертов

График расхода



MDW

Гидравлические блоки питания для гайковертов, 700 бар

Емкость камеры: 2,6 л

Расход при 700 бар: *0,4-0,6* л/мин

Мощность: *0,75-1,1* кВт

Расход воздуха: 1900 л/мин

Макс. давление: 700 бар

Размеры:

Модель	Объем камеры	Объем масла		Размеры, мм					
Š	Л	л	Α	В	D	Ε	Н	КГ	
MDWR			366	197	284	119	390	18,5	
MDWRH	2,6	2,4	400	050			400	20,5	
MDWRP			400	250	-	-	420	17,5	

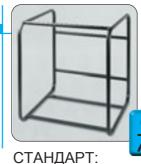
Рабочие характеристики

욘	Pac	ход масла	Давле	ение	Двигатель				
Модел	<i>1</i> ступень	<i>2</i> ступень	<i>1</i> ступень	2 ступень	Напряжение	Мощность	Скорость		
Š	л/мин	л/мин	бар	бар		кВт	об/мин		
MDWR	2,1	0,4			230В-50 Гц	0,75	2800		
MDWRH	6.0	0.6	65	700	230Б-301 Ц	1, 1			
MDWRP	6,0	0,6			Air	1,1	3000		

Функции

Модель	Совместимые модели	Клапан	Обозначение
MDWR			A B ₹
MDWRH	Гайковерты	Поступ. движ - Возврат	
MDWRP			년란] P T

ME - MM - MP - MS



Модульные гидравлические блоки питания - 700 бар

• Большой выбор комплектующих для блоков питания

Защитная рама для насосов с бензиновыми двигателями MS

Чтобы определить емкость цилиндра, см. раздел "как выбрать

ХАРАКТЕРИСТИКИ

Модульные гидравлические блоки питания предназначены для обеспечения взаимозаменяемости компонентов.

Возможен заказ стандартных комплектов. Крышка используется в качестве основы для монтажа всех модульных компонентов, клапанов и прочих комплектующих.

Клапаны также монтируются на панели для регулировки давления на возвратном воздуховоде.

Эти блоки питания изготавливаются при строгом контроле качества.

Безопасность: Клапаны устанавливаются на заводе, каждый компонент соответствует требованиям "CEE 89/392 Machine Directive" и его более поздним редакциям. Срок службы: правильный выбор комплектующих обеспечивает долгий срок службы и соотношение вес/мощность вместе с компактными размерами и легкостью в обслуживании.

Экологичность: Блоки удобны, отличаются низким шумом и надежностью, что обеспечивает максимальное качество работы.

В комплект входит:

- Двигатель (имеются четыре модификации): трехфазный электрический, однофазный электрический, бензиновый и пневмодвигатель. Кроме того, наши электродвигатели комплектуются магнитным термовыключателем, срабатывающем при нулевом напряжением, силовым кабелем длиной 5 м, вилкой СЕЕС защитой класса ІР54.
- Насосы 13 модификаций с потреблением от 0,45 до 10 л/мин
- Обратный клапан, регулируемый извне, монтируется на всех насосах с клапанами ручной, электрической, воздушной и пружинной регулировкой по выбору (стр. 69)
- Камера емкость от 5 до 40 л
- Комплектующие для регулировки мощности блоков (стр. 71).

Для правильного выбора гидравлических блоков питания см. таблицу на след. странице.

СФЕРА ПРИМЕНЕНИЯ

Незаменимы для подъема и удерживания грузов при помощи систем с одно- и двухступенчатыми цилиндрами, для любых тяжелых комплексных работ, которые невозможно произвести при помощи ручных насосов.

Модульные блоки питания для гидравлических систем - 700 бар

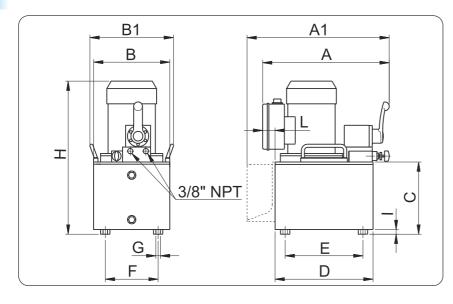
Таблица моделей

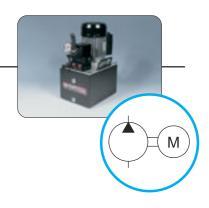
				17	ин дь	BVII A	ТЕЛЯ
	Прим.	ОПИСАНИЕ	ОБОЗН.	ME	MM	MP	MS
		Потребление л/мин LP/HP 0,9 / 0,45 аксиально-поршневой насос	Α	•	•	-	-
		" 4,7/0,45 "	В	•	•	-	-
		" - /0,9	С	•	•	-	-
		" 1,8/0,9 "	D	•	•	•	•
		" 2,4/0,9 "	Н	•	•	-	-
HACOC		" 9,4/0,9 "	Ε	•	•	•	•
Μ		" - / 1,8 "	F	•	-	-	•
		" 4,7/1,8 "	G	•	-	-	•
		" - / 1,6 "	L	•	-	-	-
		" 10 / 1,8 Комб. поршневой/ шестеренный насос	T *	•	-	-	-
		" 10 / 2,5 Радиальный поршневой насо <i>с</i>	V *	•	-	-	-
		5л	05	•	•	•	-
4		10 л высокий	10	•	•	•	-
KAMEPA		10 л низкий	11	•	•	•	•
M		20 л	20	•	•	•	•
ঽ∣		40 л	40	•	•	•	•
	≥ i	Р и Т выходы с перепуском	M20	•	•	•	•
	S модель клапан с пружинным возвратом	Клапан с ручной регулировкой Зхстор., 2 положения	M21	•	•	•	•
	Σ×	Клапан с ручной регулировкой Зхстор., 3 положения	M31	•	•	•	•
	a by	Клапан с ручной регулировкой Зхстор., 3 положения, контроль полох	M32	•	•	•	•
	одель ан с пружи возвратом	Клапан с ручной регулировкой 4хстор., 3 положения	M41	•	•	•	•
	Bg and	Клапан с ручной регулировкой 4хстор., 3 положения, контроль пол.	M42	•	•	•	•
Ŧ	S N ⊓a⊓	Клапан с ручной регулировкой 4хстор., 3 положения, возврат 150 бар	M51	•	•	•	•
KTALTAH	5	Клапан с ручной регулировкой 4хстор., 3 положения, возврат 150 бар	M52	•	•	•	•
5		Соленоидный клапан Зхстор. 2 положения, открытый	E21	•	•	Р•	-
	ᆲ	Соленоидный клапан Зхстор. 2 положения, закрытый	E22	•	•	Р•	-
	ਬੂਦ	Соленоидный клапан Зхстор. 3 положения	E31	•	•	Р•	-
	Р модель пневмоклапан	Соленоидный клапан 4хстор., 3 положения	E41	•	•	Р•	-
	- W	Соленоидный клапан 4хстор., 3 положения, контроль	E42	•	•	Р•	-
	모	Соленоидный клапан 4хстор.,3 положения, возврат 150 бар	E51	•	•	P•	-
		Соленоидный клапан 4хстор. 3 положения, контроль, возврат 150 бар	E52	•	•	P•	-
		Манометр**	G	•	•	•	•
뿔		Защитный корпус	С	•	•	•	•
Ĭ l	[Защитный корпусс 4 вращающимися колесами, Ø 80х25 мм	W	•	•	•	•
χ		Ручной пульт ДУ	R	•	•	•	-
комплектующие		Пульт ДУ с ножной педалью	F	•	•	•	-
Ë	[Датчик давления и манометр	Р	•	•	-	-
Ā	[Редукционный фильтр сжатого воздуха	L	-	-	•	-
8	[Перепускной клапан односторонний	U	•	•	•	•
Изгота	вление	Без регулируемого клапана макс. давления	Z	•	•	•	•
на зака		Без магнитного термовыключателя	Y	•	•	-	-

^{*} Насос подключается только к камерам емкостью 20 и 40 л

Обозначение модели

ME	Α	05	M 2 1	G
Тип двигате	тя Тип насоса	Емкость камеры	Клапан	Аксессуары по заказу


Пример: MPE10P41R пневмодвигатель, насос 9,4/0,9 л/мин, камера емкостью10 л, клапан регулировки потока воздуха 4-стор. 3 положения, пульт ДУ. ПРИМ.: Комплектующие указывать в алфавитном порядке обозначений.


^{**} манометр \varnothing 100 с клапаном с ручным регулированием – \varnothing 63 с соленоидными клапанами и ручными клапанами с контролем состояния

ME

Модульные блоки питания с 3хфазным электродвигателем, 700 бар

Емкость камеры: 5-40 л

Расход

при 700 бар: 0,45-2,5 л/мин

Мощность: *0,75-3* кВт

Макс. давление: 700 бар

Размеры:

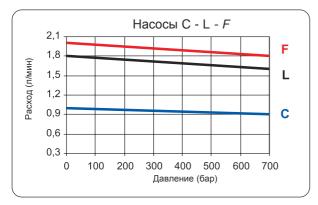
Емкость камеры	Объем масл <i>а</i>		Размеры, мм										
Л	Л	Α	A 12	В	B1	С	D	Е	F	G	① <i>H</i>	1	L
5	3,8	370	470	245	270	129	315	250	170		390		40
10 высокий	8,8	370	470	243	270	227	313	250	170	M8	488	10	40
<i>10</i> низкий	7,7	447		000	378	129	110	220	070		390		
20	17,7	447	-	360	_	257	410	320	270	Ш9	518	40	-
40	35,8	462		600	_	237	440	350	510	шэ	310	40	

① Добавьте14 мм для моделей MEC, MEH, 40 мм для моделей MEL, MEF, MEG, 72 мм для модели MEV.

Рабочие характеристики:

Ф							
5	Pac	ход масла	Дав	вление		Двигатель	
Модель	<i>1</i> ступень	<i>2</i> ступень	<i>1</i> ступень	<i>2</i> ступень	Напряжение	Мощность	Частота вращ
Σ	л/мин	л/мин	бар	бар		кВт	об./мин
MEA	0,9	0,45	100			0,75	
MEB	4,7	0,40	85			0,73	1400
MEC	-		-				
MED	1,8	0,9	100		400 В-50 Гц	1,1	2800
MEH	2,4	0,9	85	700	/ -	1, 1	1400
MEE	9,4		00	700	(Двигат. с		2800
MEL	-	1,6			различным		1400
MEF	-		-		напряжение		
MEG	4,7	1,8			по заказу)	2,2	2800
MET	10		85				
MEV	10	2,5				3	1400

② Только для блоков с объемом 5 и 10 л с пультами ДУ R или F.


ME

Модульные блоки питания с Зхфазным электродвигателем, 700 бар

График расхода



График расхода

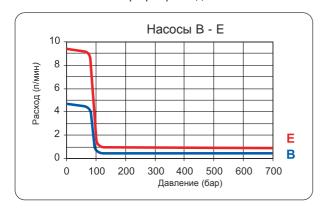


График расхода

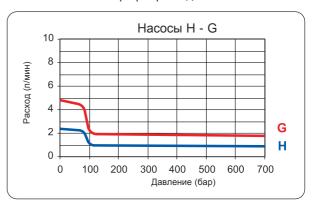
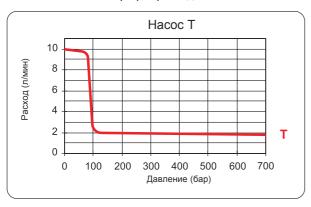
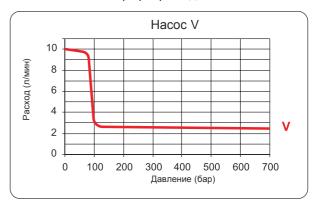
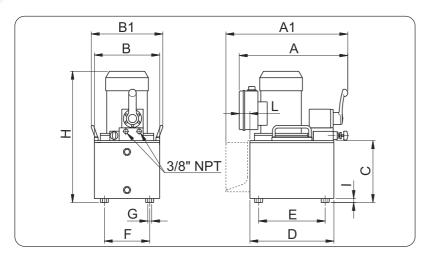
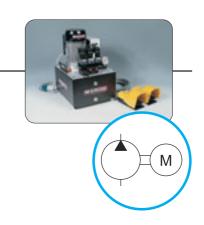


График расхода


График расхода



MM

Модуьные блоки питания с однофазным электродвигателем, 700 бар

Емкость камеры: 5-40 л

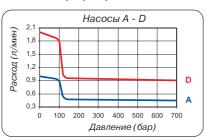
Расход

при 700 бар: 0,45-0,9 л/мин

Мощность: 1,1-1,5 кВт

Макс. давление: 700 бар

Размеры:


Емкость камеры	Объем масла		Размеры, мм										
Л	Л	Α	A12	В	B1	С	D	Ε	F	G	①H	1	L
5	3,8	370	470	245	270	129	315	250	170		410		40
10 высокий	8,8	370	470	245	270	227	313	230	170	M8	508	10	40
10 низкий	7,7	447		000	378	129	410	000	070		410		
20	17,7	447	-	360	_	257	410	320	270	Ш9	518	40	-
40	35,8	462		600	_	257	440	350	510	шэ	310	40	

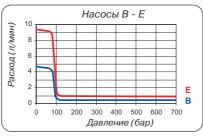
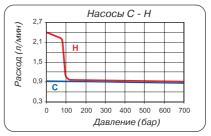
- ① добавтье 23 мм для моделей ММА, ММВ, добавьте 48 для моделей ММС, ММН
- Только для блоком емкостью 5 и 10 л с пультами ДУ R или F.

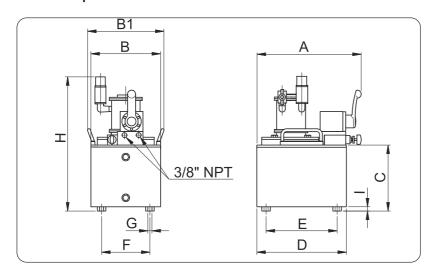
Рабочие характеристики

16					T				
6-7-1	Pac	ход масла	Дав	вление	Двигатель				
Модель	1 ступень	2 ступень	1 ступень	2 ступень	Напряжение	Мощность	Частота вращ.		
S	л/мин	л/мин	бар	бар		кВт	об./мин.		
MMA	0,9	0.45	100		230В-50 Гц	1,1			
MMB	4,7	0,40	85			1,1	1400		
MMC	-		-	700	(Двигат. с				
MMD	1,8	0.0	100		различны	л л, 1,5	2800		
MMH	2,4	0,9	85		напряжение	м 1,5	1400		
MME	9,4		00		по заказу)		2800		
1									

График расхода

График расхода


График расхода

MP

Модульные блоки питания с пневмодвигателем, 700 бар

Расход масла

при 700 бар: 0,9 л/мин

Мощность: *2,6* кВт

Макс. давление: 700 бар

Потребление: 3400 л/мин

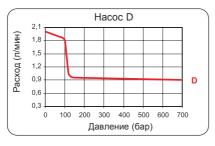
Размеры:

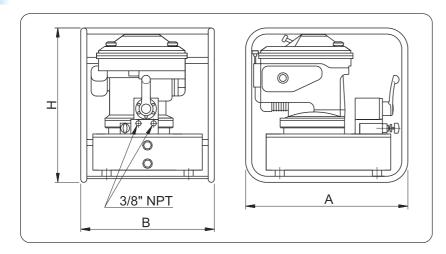
Емкость камеры	Объем масла		Размеры, мм								
Л	л	Α	В	B1	С	D	Ε	F	G	Н	1
5	3,8	370	245	270	129	315	250	170		390	
10 высокий	8,8	370	243	270	227	313	250	170	M8	488	10
<i>10</i> низкий	7,7	447	360	378	129	410	220	070		390	
20	17,7	447	300	_	257	410	320	270	Ш9	518	40
40	35,8	462	600		257	440	350	510	шэ	310	40

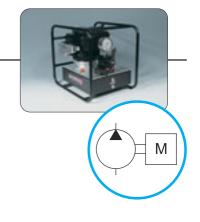
Рабочие характеристики

П							
<u>Б</u>	Pac	код масла	давление		Двигатель		
одо	<i>1</i> ступень	<i>2</i> ступень	<i>1</i> ступень	2 ступень	Мощность	Частота вращения	
Σ	л/мин	л/мин	бар бар		кВт	об./мин	
MPD	1,8	0,9	100	700	2,6	3000	
MPE	9,4	0,9	85 700		2,0		

График расхода




График расхода



MS

Модульные блоки питания с бензиновым двигателем, 700 бар

Емкость камеры: 10-40 л

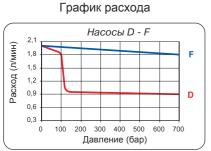
Расход

при 700 бар: 0,9 - 1,8 л/мин

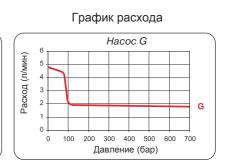

Мощность: *4,4* кВт

Макс. давление: 700 бар

Потребление: *0,95* **л/ч**


Размеры:

Емкость камеры	Объем масла	Р	азмерь мм	Ι,
Л	л	Α	В	Н
<i>10</i> низкий	7,7	555	440	500
20	17,7	333	440	628
40	35,8	510	660	580



Рабочие характеристики:

2										
50	Pac	ход масла	Дав	вление	Двигатель					
Модел	<i>1</i> ступень	2 1 ступень ступень		<i>2</i> ступень	Мощность	Частота вращения				
Σ	л/мин	л/мин	бар	бар	кВт	об./мин				
MSD	1,8	0,9	100							
MSE	9,4	0,5	85	700	4,4	3000				
MSF	-	1,8	-	700	¬, ¬					
MSG	4,7	1,0	85							

VMM-VME

Клапаны для модульных блоков питания

• Таблица свойств клапанов с ручным регулированием

Модель	Применение	Свойства	Символ
VMM20	Для контроля встроенных клапанов	Выход Р иТ с перепуском	A T P T
VMM21		Поступ. движВозврат	A P T
VMM31	Одностороннего действия	Поступ. движУдержание - Возврат	A PT
VMM32		Поступ. движУдержание с контролем состояния-Возврат	
VMM41		Поступ. движУдержание - Возврат	A B P T
VMM42	Прусторошного	Поступ. движУдержание с контролем состояния- Возврат	A B S S S S S S S S S S S S S S S S S S
VMM51	Двустороннего действия	-Поступ. движ -Удержание -Возврат при 150 бар	A B B
VMM52		-Поступ. движ -Удержание с контролем состоя - Возврат при 150 бар	RNH T - T - T - T - T - T - T - T - T - T -

Таблица свойств клапанов с электрическим регулированием

Модель	Применение	Свойство	Обозначение
VME21		Поступ. движВозврат	A P T
VME22	Одностороннего действия	Поступ. движУдержание - Возврат	A Marina P T
VME31		Поступ. движУдержание - Возврат	A M T T T T T T T T T T T T T T T T T T T
VME41		Поступ. движУдержание - Возврат	A B M T T T M P T
VME42	Двустороннего	Поступ. движУдержание с контролем состояния- Возврат	A B S S S S S S S S S S S S S S S S S S
VME51	действия	-Поступ. движ -Удержание -Возврат при 150 бар	
VME52		-Поступ. движ -Удержание с контролем состоян -Возврат при 150 бар	NS TO THE TENTH OF

VMS-VMP Клапаны для модульных блоков питания

• Таблица функций клапанов с ручным регулированием, пружинный возврат

Модель	Применение	Функции	Обозначение
VMS31	2	Поступ. движУдержание - Пружинный возврат	A M T T P T
VMS32	Одностороннего действия	Поступ. движУдержание с контролем состояния- Пружинный возврат	
VMS41		Поступ. движУдержание - Пружинный возврат	A B P T
VMS42	Двустороннего	Поступ. движУдержание с контролем состояния- Пружинный возврат	A B O O PT
VMS51	действия	<i>П</i> Поступ. движУдержание - Пружинный возврат при 150 бар	MILL XW9
VMS52		Поступ. движУдержание с контролем состояния- Пружинный возврат при 150 бар	

• Таблица функций клапанов с пневматическим регулированием

Модель	Применение	Функции	Обозначение
VMP21	Пришенение	Поступ. движВозврат	A M T
VMP22	Одностороннее действие	Поступ. движУдержание - Возврат	A M T T T T T T T T T T T T T T T T T T T
VMP31		Поступ. движУдержание Возврат	A MITHA PT
VMP41		Поступ. движУдержание Возврат	A B P T
VMP42	Двустороннего	Поступ. движУдержание с контролем состояния- Возврат	A B S S S S S S S S S S S S S S S S S S
VMP51	действия	-Поступ. движ. -Удержание -Возврат при 150 бар	A B A A A A A A A A A A A A A A A A A A
VMP52		-Поступ. движ. -Удержание с контролем состоя -Возврат при 150 бар	RHUS (PARTIE)

Комплектующие

для модульных блоков питания, 700 бар

G

• *G* – Глицериновый манометр Ø100 с ручными клапанами и Ø 63 с соленоидами и ручными клапанами с контролем состояния.

• С – Защитный корпус

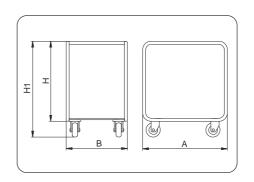
• W – Защитный корпус с 4 вращающимися колесами Ø 80х25 мм

• Я – Ручной пульт ДУ (только для соленоидных или пневмоклапанов), радиус действия - 5 м.

 F – Педальный пульт ДУ (только для соленоидных или пневмоклапанов), радиус действия - 5 м.

Р - Датчик давления и манометр

- L Редукционный фильтр для смазочных веществ с пневмодвигателем.
- *U* Регулятор потока воздуха одностороннего действия.


Модели с пультом ДУ (R или F) и Зхфазным блоком питания требуют несколько проводов (4 провода напряжения+земля).

МОДИФИКАЦИИ ПО ЗАКАЗУ

- Z Без регулируемого ручного колеса, клапан макс. давления
- У Без магнитного термовыключателя для моделей с эхлектродвигателем

Размеры защитного корпуса:

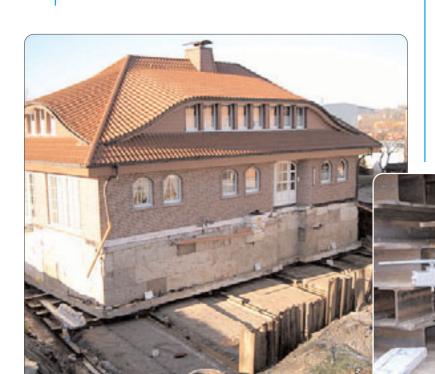
С камерой		Разме	ры, мм			
Л	Α	В	Н	H1		
5	400	325	480	575		
10 высокий	480	323	580	675		
<i>10</i> низкий	560	440	500	595		
20	560	440	628	721		
40	510	680	580	673		

СИНХРОННЫЕ ПОДЪЕМНЫЕ СИСТЕМЫ

SYNCHROLIFT.

Наши специалисты могут осуществляь контроль за работами по подъему.

Наш технический отдел по запросу может разработать технические, рабочие и индивидуальные решения на основании ваших требований.


XAPAKTEPUCTUKU

Это самый передовой и точный способ синхронизированного подъема и опускания грузов. Система управления характеризуется следующим:

- Система управления запуском от блоков питания контролирует потоки от разных цилиндров и проверяет сигналы, поступающие от динамических преобразователей, которые, в свою очередь, приводят в действие соответствующие регулирующие клапаны. Компьютер осуществляет управление системой и показывает текущее состояние и соотв. техн. параметры.
- Многофункциональность и точность: Контролируется большое количество подъемных точек и цилиндров разных типов. Программа может также управлять линейными и пространственными подъемными операциями, с точностью до миллиметра позиционируя структурные элементы (напр., опору моста, один конец которой сместился)

ПРИМЕНЕНИЕ

Наша система Synchrolift необходима в случаях, когда требуются гидроцилиндры с различным усилием для подъема низко расположенных грузов. Например, подъем моста весом 3000 т с точностью до 1 мм, или выпрямление здания, поврежденного в результате смещения почв. Это лишь немногие примеры применения синхронной подъемной системы.

Синхронные системы подъема

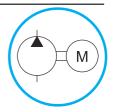
SYNCHROLIFT

4-48 Точки подъема:

Нагрузка на **100-1000** т

Макс. раб. давл.: 700 бар

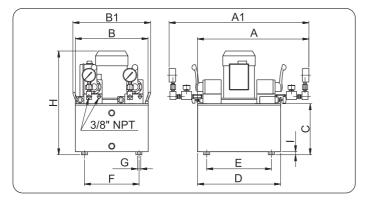
Макс. погрешность: 0,1 ММ


Synchrolift включает в себя:

	Система управления
ESY4	электронная базовая станция управления (4 точки) с компьютером + ноутбук с програм обеспечением (Windows) для отображения и контроля работ и записи данных + 4 линейных преобразователя (1 на каждую точку)
ESY8	электронная базовая станция управления(8 точек) с компьютером + ноутбук с программ обеспечением (Windows) для отображения и контроля работ и записи данных 8 линейных преобразователей (1 на каждую точку)
	ESY4 и ESY8 можно объединить, что позволит контролировать 48 подъемных точек
	Компоненты гидравлической системы
Рабочий	Стандартный гидравлич. блок питания по выбору
Цилиндры	Стандартные гидроцилиндры по выбору
Шланги Фиттинги Соединен	Шланги, фиттинги и соединения по требованию 75 гара
	Количество и номенклатуру компонентов нужно выбирать исходя из потребностей и требований к системе управления

Синхронные подъемные системы

SPLIT FLOW ME##M52GU Блоки питания



В случае особой сложности работ по подъему/опусканию, требующих высокой точности, рекомендуется наша система Synchrolift

Рабочие характеристики

ЭЛЬ	16	Pacxo	од мас	па Да	авлен	ие Давление						
	К-во выходо	<i>†</i> В ^{СТУП.}	<i>2</i> ° ступ.	<i>f</i> ступ.	<i>2</i> ° ступ.	Напряжение	Мощност	ь Част. врац				
Σ			л/мин	бар	бар		кВт	об./мин				
MEM	2	-	0.9	-								
MEN	2	2,2	0,9	85	700	400В-50Гц	2,2	2800				
MEQ	4	1	0,45	1								

Емкость камеры: 10-40 л

Расход

при 700 бар: *0,45-0,9* л/мин

Мощность: *2,2* кВт

Макс. давление: 700 бар

XAPAKTEPUCTUKU

Гидравлические блоки питания Split Flow имеют два или четыре независимых вывода для подачи масла даже в случае расхождения значений давления на линиях. Они включают в себя:

- Зхфазный электродвигатель.
- 2/4 4хсторонние, 3-позиционные клапаны с контролем состояния, давление на возврате в В порте установлено 150 бар.
- клапан контроля расхода на всех выходах для контроля снижения нагрузки.
- манометр на каждом выходе.

ПРИМЕНЕНИЕ

Это эффективное и экономичное решение для подъема при помощи блока до 4 цилиндров различных грузов. Поскольку они опираются на на равные геометрические напорные линии, без фактического управления хода извне блоки питания Split Flow обеспечивают синхронный подъем с погрешностью ±3% и контроль процесса работы. Кроме того, они также позволяют осуществлять синхронное опускание грузов при помощи цилиндров двустороннего действия.

Размеры

1	Емкость камеры	Объем масла					F	Размер	ы, мм				
	Л	Л	Α	A1	В	B1	С	D	Е	F	G	Н	1
	10 низкий	7,7	555		360	378	129	410	320	270	М8	410	10
	20	17,7	333	700	300		057	410	320	270		F10	40
	40	35.8	570		600	-	257	440	350	510	Ш9	518	40

Обозначение модели

ΜE	#	#	M52	G	U	
Тип двигателя	Тип насоса	Емкость камеры	Тип клапана	Манометр	Односторонний регулятор пот	ока

Клапаны и комплектующие

для гидравлических систем

Содержание

Манометры и блоки манометров

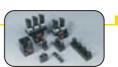
серия *G* стр. 76

Соединения

серия *K* стр. 77

Коллекторы и фиттинги

серия *R* стр. 79

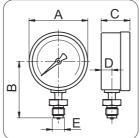

Шланги

серия *S* стр. 82

> Встроенные редукционные и распределительные клапаны

Серия *VL - VR* стр. 83

Масло


серия ZOH стр. 88

Манометры и блоки манометров

700-4000 бар Давление:

63-100 mm Диаметр шкалы:

Погрешность шкалы: 1%-1,6%

бар - бар/кН Шкала:

Технические характеристики манометров с двойной шкалой

Модель	шкала, бар	шкала, кН		Для цилиндров:	Размеры, мм
G10F102	7	0-121/0-22	25	CMF 10/20 T	
G10F306		0-327 / 0-5		CMF/COF 30/60 T	
G10S102	_	0-109/0-19	94	CGS/CMC/CMI/CMP/COI 10 T - CGS/CMC	см. табл. /CMP 20 ton
G10S253		0-228 / 0-30		CMI 25 ton - CGG/CGS/CMC/CMI/CMP/C	OI 30 T
G10S5010	<mark>)</mark>	0-486 / 0-9	11	CGG/CGS/CMC/CMI/CML/CMP/COI/COS	50/100 τ

Предлагаются адаптеры для манометров на 1000, 1600, 3000 бар

ХАРАКТЕРИСТИКИ

Манометры

Диаметр шкалы варьируется от 63 до 100 мм, ед. измерения - бар and PSI (фунт на кв. дюйм). Манометры на1000 бар - глицериновые, на1600, 2500, 4000 бар - сухие.

Манометр G106L имеет резьбовое соединение 1/4" NPT под углом 45 градусов для установки на левой стороне головки насоса.

Модель G10 предлагается также с двойной шкалой, в барах и кН, рассчитан на раб. давление до 700 бар для цилиндров с полым поршнем (G10F##) и обычным поршнем (G10S##).

Блоки манометров

Изготавливаются из стали в 4-х модификациях с разными диаметрами и кронштейнами для крепления к оборудованию.

Техн. характеристики манометров: 700 – 1000 бар

												Техн. характеристики манометров: 1600-3000-4000 б									0 б			
Макс. раб. давление	Полная шкала	Диаметр шкаль	Класс точности DIN16005	Индекс шкалы	Резьба	Модель	Р			Bec		Макс. раб. давление Полная шкала Диаметр шкал		Класс точности DIN16005	Класс точност DIN16005 Индекс шкаль Резьба		Модель	Ρ	Размеры, мм					
бар	бар	MM	%	ба	ρЕ		Α	В	С	D	КГ		бар	бар	MM	%	ба	ρЕ		Α	В	С	D	КГ
700	1000	-00	4.0	50	. (4" NIDT	G106l	60	54	, ,	_	10		1600	1600			50 1,	2" BSP*	G16	101	98	49	15,5	0,6
700	1000	63	1,6	50	1/4" NPT	G106	68	54	3	ľ	13	0,2	3000	3000	100	1,0	50 1/	2" BSP**	G30	101	98	49	15,5	0,6
1000	1000	100	1,0	20	1/2" BS вращаю	GIU	101	9	8 4	9	15,5	0,8	4000	4000			100	M16 x 1 вспом	5 G40	101	77	60	24,5	0,6
													* pnai	10101111	MIA OC	** 07	-011140	แลกแผนั						

1/4" NPT

25

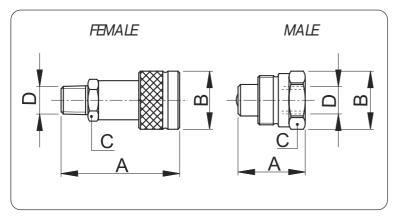
1/2" BS

	Макс. раб. давление	Полная шкала	Диаметр шкалы	Класс точности DIN16005	Индекс шкалы	Резьба	Модель			меры, им		Bec
	бар	бар	MM	%	ба	ρЕ		Α	В	С	D	КГ
00	1600	1600			50 1/	2" BSP*	G16	101	98	49	15,5	0,6
0,2	3000	3000	100	1,0	50 1/.	2" BSP**	G30	101	98	49	15,5	0,6
0,8	4000	4000		i	100	M16 x 1, вспом	5 G 40	101	77	60	24,5	0,6
* вращающийся ** стационарный												

Техн. хар-ки встроенных блоков манометров на 1000 бар

52	
P	
40	

<u>~</u>									
Модель	Макс. раб. давление	Соединение д манометра	Вход/выход	Размер	Bec				
				MM	КГ				
RP52		1/4" NPT		100	0,40				
RP50	1000		3/8" NPT	60	0,28				
RP50		1/2" BSP	3/0 NF1	90	0,33				
RP50.		-		140	0,42				


3/8" NP

3/8" NPT

Быстросменные штуцеры, 700 бар

Макс. раб. давление: 700 бар

Резьба: 1/4" - 3/8" NPT

ХАРАКТЕРИСТИКИ

Быстросменные штуцеры могут резьбовыми и гладкими и подходят к продукции EPP, они могут заменяться большинством штуцеров, используемых на гидравлическом оборудовании высокого давления.

Гладкие штуцеры являются предпочтительными по следующим причинам.

- при установке и снятии практически исключено попадание жидкости.
- Легко чистятся
- Вращательное движение не приводит к перекручиванию шланга.
- Безопасность соединения, (для снятия требуются только два движения)

Техн. характеристики быстросменных штуцеров: 700 бар

Раб. давлени	Тип е штуц	Резьба ера	Тип штуцера	модель	Размеры, мм			Bec
бар		D			Α	В	С	g
	Резь- бовой	1/4" NPT	Комплект (<i>K71M+K71F+K71C+K71D</i>)	K71	-	-	-	-
			Глав. штуцер с внутр. резьбой	K71M	39	30	19	75
			Вспом. штуцер с наружной резьбой	K71F	60,5	30	22	140
			Вспом. штуцер с внутр. резьбой	K71X	58	30	22	150
			Колпачок для вспом. штуцера	K71C	-	-	-	-
			Колпачок для глав. штуцера	K71D	-	-	-	-
		3/8" NPT	Комплект(K73M+K73F+K73C+K73D)	K73	-	-	-	-
			Глав. штуцер с внутр. резьбой	K73M	40,5	36	32	120
700			Вспом. штуцер с наружной резьбой	K73F	72	35,5	24	200
			Вспом. штуцер с внутр. резьбой	K73X	76	35,5	24	210
			Колпачок для вспом. штуцера	K73C	-	-	-	-
			Колпачок для глав. штуцера	K73D	-	-	-	-
	Глад- кий	1/4" NPT	Комплект (<i>KP71M+KP71X</i>)	KP71	-	-	-	-
			Глав. штуцер с внутр. резьбой	KP71M	48	24	22	90
			Вспом. штуцер с внутр. резьбой	KP71X	58	29	22	210
		3/8" NPT	Комплект (<i>KP73M+KP73X</i>)	KP73	-	-	-	-
			Глав. штуцер с внутр. резьбой	KP73M	55	26	24	100
			Вспом. штуцер с внутр. резьбой	KP73X	60	29	24	220

При использовании резьбовых штуцеров нужно следить, чтобы они были плотно завинчены один на другой.

Если соединение неплотное, масло не проходит через штуцер, что может вызвать повреждения.

Быстроразъемные штуцеры, 1000 - 1500 - 2000 бар

MALE FEMALE

C
A
A

Макс. раб. давление: *1000-2000* бар

1/4" - 3/8" NPT

Резьба: 1/4 - BSP

ХАРАКТЕРИСТИКИ

Эти штуцеры подходят для всех типов продукции EPP и когмплектующих для работы при высоком давлении. Быстроразъемные штуцеры обеспечивают быстрое и легкое соединение и имеют пылезащитный колпачок.

Соблюдайте технику безопасности

СТР.
120

Технические характеристики быстроразъемных штуцеров: 1000 - 1500 - 2000 бар

Раб. давл.	Тип штуцер	штуцера резьбы		Модель	Размеры			Bec
бар		D		1	Α	A B		g
		1 //!	Комплект <i>(К11М+К11X)</i>	K11	-	-	-	-
		1/4" NPT	Глав. штуцер с внутр. резьбой	K11M	36	25	22	60
1000		NPI	Вспом. штуцер с внутр. резьбой	K11X	58,5	27,5	24	150
1000		3/8"	Комплект <i>(К13М+К13X)</i>	K13	-	_	-	_
		NPT	Глав. штуцер с внутр. резьбой	K13M	37	27	24	70
	быстро		Вспом. штуцер с внутр. резьбой	K13X	60,5	27,5	24	175
	разъемн	ЫЙ	Комплект <i>(К15М+К15X)</i>	K15	-	-	-	-
1500			Глав. штуцер с внутр. резьбой	K15M	37	25	22	65
		1/4"	Вспом. штуцер с внутр. резьбой	K15X	58,5	27,5	24	150
		BSP	Комплект <i>(K20M+K20X)</i>	K20	-	-	-	-
2000		120°	Глав. штуцер с внутр. резьбой	K20M	38	25	22	65
			Вспом. штуцер с внутр. резьбой	K20X	67	30	24	210
				<u> </u>				

Фиттинги для коллекторов - 1000 - 2000 - 3000 бар

Макс. раб. давление: 1000 бар

Применение:

3 - 9

ХАРАКТЕРИСТИКИ

Коллекторы:

• Различные размеры с аксиальными и радиальными выходами. Все коллекторы имеют резьбу 1/4" NPT для подсоединения манометров.

фиттинги.

• Фиттинги с раб. давлением 1000 бар гаранттируют класс безопасности 4 при раб. давлении 700 бар, и класс безопасности 2,8 при раб. давлении1000 бар.

Тип	Молоп			Α	В
ТИП	Модель		Применение	ММ	MM
Коллектор с 5 выходами	RB386	3/8"NPT LdN	6	-	-
Коллекторы с большим количеством	RM387	B 40 Ø 6.5 3/8"NPT	7	260	110
выходов	RM389	A	9	400	180
	RK383	TIN A A	3	45	-
Радиальные коллекторы	RK385	32 IdN ₁₈ %	5	55	-
	RK387		7	65	-

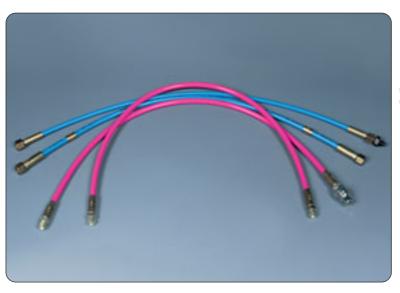
Применение:

Макс. раб. давление: 1000 бар Фиттинги 3 - 9

Тип	Модель				Разме	ры	
	тиодоль			Α	В	С	D
Втулка	RC14			1/4" N	PT -	10,5	_
Бтулпа	RC38		С	3/8" N	PT		
	RS14			1/4" N	P17/4" N	PT 3.	2 19
Муфта	RS38			3/8" N	PT -3/8" N	PT3A	24
	RS52		C	1/4" N		1 134	
	RN14			1/4" N	PT 1/4	" N B9 T	
	RN38					41	
Ниппель	RN381			3/8" N	3/8" NI	P170	17
	RN382		C	3,0 1.		120	
	RN52				1/4" N	PT41	
	RR23			1/4" B 120°	SP 3/8" N	41	04
	RR24		↓ ↓	1/4" N		40	24
Редукци-	RR52		√	3/8" N	PT - 1/4" N	DT	19
г едукци- онный клапан	RR02			1/2" B		40	22
	RR26		□	1/4" N	PT -1/2" B		00
	RR501			3/8" N	'	O/	30
Угловой	RE14		B	1/4" N	PT 15	35	35
патрубо			C	3/8" N	PT 15	40) 40
Тройник	RT14			1/4" N	PT 12	2,5	40 35
	RT38		C	3/8" N	PT 15	45	5 40
Кресто- образный патрубок	RX14		▼ ▼ □	1/4" N	IPT -	4	5 45
	RX38	 	C	3/8" NE		4	5 45

R Фиттинги

Макс. раб.


давление : 2000-3000 бар

Тип Лавп Молопи				D:	азмеры		
Тип	Давл. бар	Модель		A	В	С	D
Штуцер	2000	RC15		1/4" BSP 12	0° -	20	
штуцер	3000	RC34	C C	3/4"-16 UNF	60° -	3	32
Муфта	2000	RS15		1/4" BSP 120°	1/4" BSP 120	40	19
Муфта	3000	RS34	<u>D</u> _ C	3/4"-16 UNF 60	° 3/4"-16 UNF 6	0° 42	27
		RN15			1/4" BSP 1	20°	46
		RN29		1/4" BSP 120	° 1/4" NP	Т	43
	2000	RN53	D.		3/8" NP	Т	45
	2000	RN17			1/4" BSP **	34	22
		RN31		1/4" BSP	** 1/4" NP	Т	37
		RN55	' <u>c</u> '		3/8" NP	Т	39
Соед.		RN32		1/4" BSP 1	2 0 /4" BSP	**	40
гайка		RN33	Internal cone 60°	M16X1,5 6	1/4" BSP	**	39
		RN28			1/2" BSF	•	44
	3000	RN34	**	+	3/4"-16 UNF 6	0°54	
	3000	RN34 O*	The state of the s		3/4"-16 UNF 6	063	22
		RN49	COLD COLD COLD COLD COLD COLD COLD COLD	3/4"-16 UNF	60/4" BSP 1	120°	50
		RN51			1/4" BSP	**	44
		RN50			M16x1.5	60°	50
Редукц.	2000	RR49		3/4" - 16 L 60°	NFI /4"BSP 120°	42	22
клапан	3000	RR51 O*		3/8" BSF 60°	1/2" BSP	53	27
Углов.	2000	RE15	B B B B B B B B B B B B B B B B B B B	1/4" BSP 120)° 12,5	35	35
патрубок	3000	RE34		3/4" - 16 U 60°	NF 12,5	40	40
Тройник	2000	RT15		1/4" BSF 120°	12,5	45	35
	3000	RT34	C	3/4" - 16 U	INF 15	45	45
Кресто-	2000	RX15		1/4" BSF 120°	-	45	45
образный патрубок	3000	RX34	C C	3/4" - 16 U 60°	NF -	55	55

^{*} шарнирный ** для гибких шлангов

Шланги высокого давления 700 - 1000 - 1800 - 2500 бар

Технические характеристики шлангов, 700-1000 бар

Макс. 700 - 2500 бар давление:

Внутр. 4,8 - 6,3 MM диаметр:

ХАРАКТЕРИСТИКИ

Эти шланги подходят для всех типов гидравлич. оборудования и состоят из 2, 4, или 6 спиралей из стального провода в зависимости от рабочего давления. Шланги характеризуются исключительной прочностью на разрыв. Наружное покрытие из полиуретана (700-1000 бар) или полиамида (1800 и 2500 бар) обеспечивает стойкость к истиранию при минимальном растяжении в процессе эксплуатации, что гарантирует качество работы.

	σοκινό παι	оакториотики ш	714111 02,700 70	oo oap			d	JΈ					_
Модел	Макс. ^Б раб. давлен	фиттицга	Длина	Штуцер) Соед, гайка		Класс безопас- ности, © 700 ба	Класс безопас- ности, © 1000 b	Внутр. диаметр	Мипн. радиус изгиба	Объем масла	Bec	
	бар					бар			ММ	ММ	см ³ /м	кг/м	
SN10 SN10M SQ10 SQ10M	1000	3/8" NPT - 3/8" male 1/4" NPT - 1/4" male	20 = 1,8 м	- K73M - K71M	-	2800	0 4	2,	8 6	,3 7	0 3	1,7	0,32

- Шланги для болтового натя-
- жения: SN#FT (муфта K13X).
- Шланги для гайковертов: SQ##FM (пальцевая муфта на одном конце и втулочная на другом)

Макс. раб. давление соединительного шланга равно раб. давлению элемента с мин. давлением.

При выборе модели насоса следует учитывать объем масла, негобходимый для заполнения шланга.

Технические характеристики шлангов, 1800 - 2500 бар

Модел	Макс. ^{Ль} раб. давлен	Резьба фиттинга ие	Длина	Муфта	і Соед, гайка	Мин. давление разрыва	Класс безопасности	Внутр. диаметр	Мипн. радиус изгиб	Объем масла	Bec
	бар					бар		ММ	ММ	см ³ /м	кг/м
SM10 SM10P	1800	1/4" BSP - 1/4" шарнирный	10 = 1 m BSP20 = 2 m	_	- RN32	4500	2,5	4,8	130	17.8	0,28
SH10 SH10P	2500	500 шарнирный	30 = 3 m etc.		- RN51	6250	2,0	4,0	175	,,,,	0,41

VL - VR

Встроенные клапаны – распределительные клапаны

При закрытом центральном клапане насос должен быть выключен, рычаг клапана переводится в среднее положение для предотвращения перегрева масла.

Для установки клапанов на модульные системы см. соответствующий раздел.

Для установки клапанов на ручные насосы PL см. соответствующий раздел.

Соблюдайте технику безопасности 120

ХАРАКТЕРИСТИКИ

Эти клапаны регулируют подачу на цилиндры и исполнительные механизмы с рабочими давлениями 700, 1000, 2000 и 3000 бар.

Спецификации.


- *VL* клапаны с ручным и электрическим регулированием для систем одно- и двустороннего действия.
- *VR* распределительные, стопорные и обратные клапаны для изоляции и регулирования работы гидросистем.

Контрольное напряжение для соленоидов - 24 В постоянного тока.

КАК ВЫБРАТЬ КЛАПАН

Прежде чем выбрать клапан, нужно учесть следующие факторы.

- Цилиндры одностороннего действия требуют 3хсторонних клапанов (Р-давление, Т-камера, А-цилиндр)
- Цилиндры двустороннего действия требуют 4-хсторонних клапанов (4 выхода, Рделение, Тнамера, А-удлинение, В-возврат)
- Позиции: положения рычага клапана.
- Выдвижение и втягивание цилиндра (2-хпозиционный клапан), выдвижение, удержание и возврат (3-хпозиц. клапан).
- ЦентрЖ промежуточная позиция. Центр может быть открыт, в этом случае клапан соединяется с насосом (Р) и механизмами (А,В) к выпускному отверстию (Т), или закрывается, затем все выходы закрываются. (Если вы хотите изолировать цилиндр, но использовать насос для питания других механизмов).

Макс. раб. давление: 700 бар

Модель		ОПИСАНИЕ встроенные клапаны	Обозна- чение
VLM31	3-стор., 3-хпозицион. клапан ручного регулирования • Поступ. движ. • Удержание • Возврат	3/8" NPT 25 2 x Ø 6.5 90	А В В В В В В В В В В В В В В В В В В В
VLM32	3-стор., 3-хпозицион. обратный клапан с контролем состояния • Поступ. движ. • Удержание с контролем состояния • Возврат	135 145 27 112" BSP	
VLM35	• Возврат 3-стор., 3-хпозицион. ручной клапан, обратный клапан Р закрыт	3/8" NPT 33 33 2ר6.5 90	
VLM36	3-стор., 3-хпозицион. ручной клапан, закрытый центр • Поступ. движ. • Удержание • Возврат	3/8" NPT 25 33 33 80 2 x Ø 6.5 90	P T
VLM41	4хстор, 3хпозицион. ручной клапан • Поступ. движ. • Удержание • Возврат	3/8" NPT 25/25 2x Ø 6.5 40 90	MAB PT T

VL Встроенные ручные клапаны

Макс. раб. давление: 700 бар

Модель	ОПИСАНИЕ встроенные клапаны	Обозна- чение
VLM42	4хстор, 3хлозицион. ручной клапан, обратный клапан с контролем - Поступ. движ Удержание с контролем состояния - Возврат	A B D D D D T
VLM45	4хстор, Зхпозицион. ручной клапан, обратный клапан с контролем состояния Р, закрытый - Поступ. движ Удержание с контролем состояния	A B P P T P T
VLM46	- Возврат 4хстор, Зхлозицион. ручной клапан Закрытый центр - Поступ. движ Удержание - Возврат	MAB MIT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

VLS Встроенные ручные клапаны, пружинный возврат

Макс. раб. давление: 700 бар

VLS31	Зхстор, Зхпозицион. клапан с ручным <i>регулированием</i> - Поступ. движ. - Удержание - Пружинный возврат	3/6' NPT [23]	140 27 12 BSP 15 2 11 12 BSP 15 2 11 12 BSP 16 2 11 BSP 1	A
VLS32	Зхстор, Зхпозицион. клапан с ручным регулированием - Поступ. движ Удержание с контролем состояния - Пружинный возврат	135 236" NPT	140 27 122 BSP 165 20 12 12 12 12 12 12 12 12 12 12 12 12 12	
VLS41	4хстор, 3хпозицион. клапан с ручным <i>регулированием</i> - Поступ. движ. - Удержание - Пружинный возврат	36' NPT 155	140 27 27 27 28 30 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40	WI A B WE
VLS42	4хстор, 3хпозицион. клапан с ручным <i>регулированием</i> Обратный клапан Р закрыт - Поступ. движ. - Удержание с контролем состояния - Возврат	138 NPT 238 388 NPT 238 NPT 23	5 140 27 17 18 18 18 18 18 18 18 18 18 18 18 18 18	A B PT

VLE Встроенные электрические клапаны

Макс. раб. давление: 700 бар

Модель		ОПИСАНИЕ					
VLE31	4хстор, 3хпозицион. клапан с электрич. регулированием • Поступ. движ. • Удержание • Возврат		122,5 60 40 72.5 123 33 3/8" NPT 33 33 2 x Ø6.5	A TIPLE PT			
VLE41	4хстор, 3хпозицион. клапан с электрич. регулированием • Лоступ. движ. • Удержание • Возврат		170 60 60 60 72.5 72.5 72.5 73.3 33 80 2ר6.5	A B P T			
VLE42	4хстор, 3хпозицион. клапан с электрич. регулированием Обратный клапан с контролем состояния - Поступ. движ. - Удержание с контролем состояния - Возврат		72.5 60 60 72.5	A B P T P T			

VR Встроенные распределительные

Макс. раб. давление: 1000 бар

K	папаны			
VRF38	Игольчатый клапан. Для перекрывания потока		Ø 6.5 A 4 O 2	->>-
VRU38	Односторонний распре делит. клапан, обеспечивающий снижение нагрузки.		35 50 25	
VRF382	Игольчатый клапан с двумя выходами. Дляраспределения потока в двух направлениях. <i>A</i> = 90		04 000 000 000 000 000 000 000 000 000	XX
VRF384	Игольчатый клапан с четырьмя выходами для разделения потока на 4 направления. <i>A= 210</i>	O MM O	A	* * * *

VR встроенные распределительные

Макс. раб. давление: 700 бар

клапаны

Модель	ОПИСАНИЕ	Обозна- чение
VRM14	Редукционный клапан снижающий напряжение цепи до мин. отметки (от 50 до 700 бар) Регулируется маховичком.	
VRR38	Односторонний обратный клапан. Для одностороннего прерывания потока масла.	
VRP38	Обратный клапан с контролем состояния. Для свободного пропускания и перекрывания движения потока в обратном направлении. Передаточное отношение1:4	

VR встроенные распределительные

Макс. раб. давление: 2000 бар

К	папаны			
VRF15	Игольчатый клапан. Для перекрывания потока.		23 27	
VRF152	Игольчатый клапан с двумя выходами для разделения потока A= 115		334 1/4 BSP	***
VRF153	Игольчатый клапан с двумя выходами для разделения потока <i>A= 180</i>	(a) 00000 (b)	65x(N-1) A 1/4"BSP Ø 6.5	X
VRF154	Игольчатый клапан с четырьмя выходами для разделения потока A= 245		40	* * * *

VR Встроенные распределительные

Макс. раб. давление: 3000 бар

Модель		ОПИСАНИЕ	Обозна- чение
VRF34	Игольчатый клапан. Для отключения ответвлений цепи.	23 27	->>-
VRR34	Односторонний обратный клапан. Для перекрывания потока масла в одном направлении.	3/4"-16UNF 80	

Масло для гидросистем

Рекомендуется всегда использовать масла ЕРР или масла с аналогичными свойствами. Другие виды масел могут повредить уплотнительные прокладки, кольца и оборудование. В этом случае гарантия на купленный товар не распространяется.

1 - 10 л Объем канистры:

ХАРАКТЕРИСТИКИ Масло для гидросистем

> Минеральные масла ЕРР для гидросистем высокого давления по стандарту ISO VG 32, обладающие прекрасной вязкостью и смазочными свойствами. Масла ЕРР обеспечивают максимальную производительность и срок службы оборудования. Гидравлическое масло ЕРР не образует пену, не оставляет клейкого осадка, защищает от коррозии гнезда клапанов, прокладки и стенки цилиндров.

> Поставляется в канистрах емкостью 1, 5 и10 л.

Артикул:

- ZOH1 1-литровая канистра.
- ZOH5 5 -литровая канистра
- ZOH10 10 -литровая канистра

Гидравлический инструмент

Содержание

Обслуживание

UE стр.90

UMS стр. 97

серия

UML стр.94

UJ стр.98

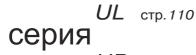
UMP стр.96

Болтовые соединения

UA ctp.99 серия

UWB-UWC ctp. 102

стр. 100



стр. 105

Инструменты

UP стр. 108

Съемники и толкатели

КОМПЛЕКТУЮЩИЕ:

 Ящик дляпереноски UEB# (кроме моделей с усилием 50 т)

ДОП. ФУНКЦИИ:

• Модель Z (UEC#Z)

комплект съемника, поставляемый с саморегулирующимся съемником с захватом (UEZ) вместо стандартного съемника с захватом. UEG).

Каждый компонент съемника имеет свое рабочее давление, которое нельзя превышать. См. данные, прведенные в таблицах.

Следует неукоснительно соблюдать требования техники безопасности, приведенные в руководствах по эксплуатации и обслуживанию.

XAPAKTEPUCTUKU

Включают в себя два узла:

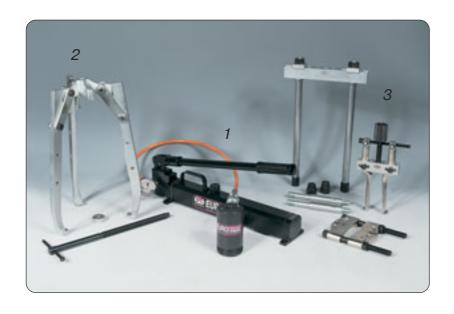
- Механический изготовлен из высококачественной стали, обеспечивающей надежность и износостойкость.
- Гидравличский состоящий из насоса PS или PL, цилиндра из серии CMF с полой резьбовой крышкой ZTE, шлангового соединения SN20M и манометроа G106L.

Съемники серии UE поставляются 5 типов усилия (5 - 10 – 20 – 30 – 50 т) и в 3 конфигурациях:

- UEC# (комплект), включающий в себя все механические и гидравлические элементы.
- UEG# (Съемник с захватом), включающий 3 узла.
- UET (комплект съемника с зажимом), состоящий из: внутреннего и наружного съемников, гидравлических элементов.

Предлагается саморегулирующийся съемник с 3-мя захватами для более легкого и точного позиционирования заготовки.

ПРИМЕНЕНИЕ


Незаменимы при снятии зубчатых колес, подшипников, штуцеров, втулок и т.д. Правильная оценка снимаемого элемента и определение требуемого усилия являются определяющими факторами при выборе компонента съемника.

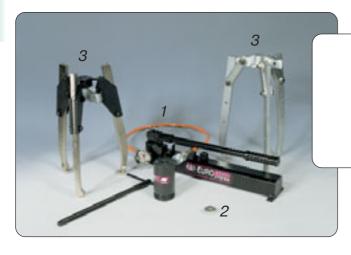
Усилие: <u>5 - 50</u> Т

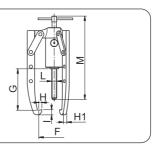
Съемники специального назначения и различных значений усилия поставляются по заказу.

Технические характеристики комплектов съемников

		Модель											
Описание		UEC5	UEC10	UEC20	UEC30	UEC50							
Гидравлика – UEU#	POS												
Ручной насос		PS100F	PL131	PL141	PL141	PL162							
Цилиндр	1	CMI5N125	CMF10N50E	CMF20N50E	CMF30N50E	CMF60N75E							
Шланг		SN20M	SN20M	SN20M	SN20M	SN20M							
Манометр		G106L	G106L	G106L	G106L	G106L							
Макс. раб. давление	-		в зависимости	от характеристик	компонентов								
Механическая чать - UEC#	Mpos												
Съемники с захватом	2	UEG5M	UEG10M	UEG20M	UEG30M	UEG50M							
Съемники, с зажимом,	0	UET5M	UET10M	UET20M	UET30M	UET50M							

Комплектующие: Ящик для переноски UEB


 Модель	Для моделей	Примечание
UEB10	UEC10	
UEB20	UEC20	-
UEB30	UEC30	Состоящий из UEB10 + UEB20
		-


UEG - UEZ

Усилие: 5 - 50 T

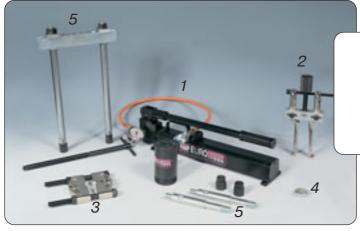
Съемники специального назначения и различных значений усилия поставляются по заказу..

Технические характеристики обычных (UEG) и саморегулирующихся (UEZ) съемников

		1			Модель		
Описа	ание		UEG5	UEG10	UEG20	UEG30	UEG50
Ollino	anno		-	UEZ10	UEZ20	UEZ30	UEZ50
Гидравлика	– UEU#	POS					
Ручной	насос		PS100F	PL131	PL141	PL141	PL162
Цилин	др		CMI5N125	CMF10N50E	CMF20N50E	CMF30N50E	CMF60N75E
Шлаі	ΗГ	1	SN20M	SN20M	SN20M	SN20M	SN20M
Манометр)		G106L	G106L	G106L	G106L	G106L
Макс. раб. да	вление	-	<i>700</i> бар	560 бар	600 бар	615 бар	580 бар
Механич.	UEG#M						
часть	UEZ#M	POS					
Предохранит.	крышкс	2	-	UETS10	UETS20	UETS30	UETS50
К-во захва	тов	3	2	* 2/3	2/3	2/3	2/3
Макс. размах	K, MM	F	195	250	480	580	920
Макс. длина	, MM	G	220	268	335	425	731
Ширина захва	ата, мм	Н	18	14	18	25	30
Глубина захва	ата, мм	H1	26	15	20	22	25
Толщина захв	ата, мм	1	11	25	32	42	50
Регулировка	резьбы	L	-	3/4" – 16 UNF	1" – 8 UNC	1 1/4" - 7 UNC	1 5/8" – 5,5 UNC
Регулировка дл	ины резьбы	М	400 670		790	975	
Bec 2/3	Вес 2/3 захвата		5	12	22/27	36/45	85/103

^{*} универсальная головка

Съемник с захватом UEZ снабжен саморегулирующимся механическим устройством для синхронизации сжатия крюковых захватом на детали с целью более точного ее позиционирования.

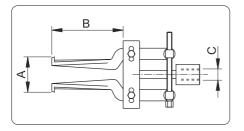

Съемник с захватом с усилием 5 т можно также использовать в качестве внутреннего съемника путем разворачивания захватов крюками наружу.

UET

Комплекты гидравлических съемников с зажимом

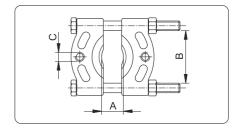
Усилие:

5 - 50 т


Съемники специального назначения и различных значений усилия поставляются по заказу.

Технические характеристики с зажимом

								Мод	цель						
Описание		UE	T5	U	ET10		l	JET20			UE	Т30		UET50	
Гидравлика – UEU#	POS														
Ручной насос		PS1	00F	PL	.131		F	PL141			PL14	!1	PL162		
Цилиндр		CMI5N	<i>I125</i>	CMF10	N50E	(CMF2	N50E		Ci	MF30N50	E	CMF6	0N75E	
Шланг	1	SN2	ОМ	SN2	?OM		SN2	20M			SN20M		SN	20M	
Манометр		G10	16L	G1	06L		Gi	106L			G106L		G	106L	
Макс. раб. давление	-	700	bar	560	bar		600) bar			615 bar		580	0 bar	
Механическая часть – UET#	Mos														
Внутренний съемнин	2	-		UE	110		U	El20			UEI30		l	JEI50	
Наружный съемник	3	-		UE	E10		UI	E20			UEE30)	UEE50		
Предохранит. крышка	4	-		UETS10		UETS20			UETS30			UETS50			
Кол-во ножек	5	2	2	2	2	2	2	2	2	2	2	2	2	2	
Длина ножки, мм	Ε	180	360	209	460	209	336	515	665	328	582	836	820	1075	
Раб. пространство, мм	G	100	280	-21	230	-56	71	250	400	4	258	512	399	655	
Мин. раб. пространство, мм			2	1	15		1.	35			180		2	30	
Мин. раб. пространство, мм			0	26	50		3	30			450		5	80	
Регулирование винтовой резьбы	L	-		3/4"-	16 UNF		1" – 8	BUNC		1	1/4" – 7 U	INC	1 5/8" - 5,5 UNC		
Регулирование длины резьбы	М	_		40	00	670					790	975			
Bec	кг	5		1	3	32					55	115			


Внутренний съемник UEI

								_
		е Давление		Р	азмеры, м	1M	Bec	
Модель	Т	бар	A min	A max	В	С	КГ	
UEI10	5	280	32	90	110	3/4" – 16 U	NF	2
UEI20	10	300	33	120	140	1"-8 UNC	2,5	
UEI30	15	310	58	190	145	1 1/4 – 7 UI	VC	6
UEI50	25	290	58	190	145	5/8" – 5,5 L	INC	6
								-

Наружный съемник UEE

		е Давление		P	азмеры, м	1M	Bec
Модель	Т	бар	A min	A ma	х В	С	КГ
UEE10	7	370	10	110	110	5/8" – 18 UNF	2,5
UEE20	13	400	12	130	150	5/8" – 18 UNI	F 5,5
UEE30	20	410	17	245	260	1" – 14 UNF	25
UEE50	33	385	17	245	260	11/4"- 12 UN	F 25

Легковесные алюминиевые домкраты

Для клещевых домкратов вес поднимаемого груза не должен превышать значение, указанное на домкрате и в таблице параметров.

Внимательно следуйте требованиям техники безопасности, приведенным в руководствах по эксплуатации и обслуживанию.

ХАРАКТЕРИСТИКИ

UML представлыяют собой автономные подъемные механизмы, способные поднимать грузы до 100 т, отличаются портативностью, производительностью и надежность. Представлены 3 модели,

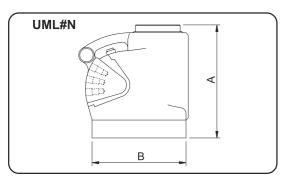
- Стандартная с силовым цилиндром для вертикального подъема или горизонтального толкания.
- С запорным кольцом, цилиндром с болтовым соединением, идеальное решение для механической поддержки грузов в течение долгого времени.
- С крюковым захватом для традиционного подъема или подъема с малой высоты. Эти модели имеют удлиненные основания для обеспечения максимальной устойчивости.

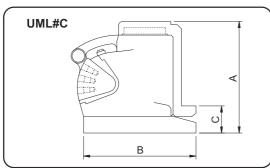
Все модели комплектуются:

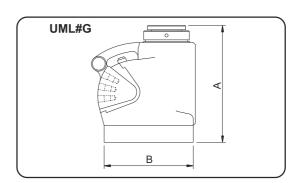
- Встроенным предохранительным клапаном для предотвращения перегрузок
- Редукционным клапаном, регулируемым при помощи рычага, для подъема и опускания домкрата.
- Встроенной ручкой для переноски на моделях с усилием больше15 т.

ПРИМЕНЕНИЕ

Благодаря малому весу и удобству в эксплуатации эти домкраты подходят для различных работ работ в промышленности, судоремонтных заводах, строительстве железных дорог.




UML



Легковесные алюминиевые домкраты

<u>Усилие: 6,5 - 100</u> Т

ход: 75 - 305 мм

Технические характеристики: алюминиевые домкраты

Ги	Усилие толкания	Макс. нагрузка на захват	Ход	Модель	Модель Размеры, мм								
	Т	Т	MM		А	В	С	Ширина	КГ				
	6,5	-	75	UML6N75	131	159			3,6				
1	10	-	115	UML10N115	182	171		76	6,3				
1	15	-	152	UML15N152	230	197		92	10,0				
Τď	20		152	UML20N152	257	191		100	13,6				
Стандарт	20	-	305	UML20N305	445	267	•	130	20,4				
CTa	30	_	152	UML30N152	263	197	-	140	15,4				
~		-	305	UML30N305	451	273		140	23,4				
1	60		152	UML60N152	292	260		107	31,3				
1		-	305	UML60N305	505	348		197	55,0				
	100	-	152	UML100N15	2 310	305		240	49,0				
Σ	20		152	UML20G152	283	191		130	14,1				
запорным кольцом	20	-	305	UML20G305	470	267		130	20,9				
δĀ	30	_	152	UML30G152	292	197		140	16,4				
HPI	30	_	305	UML30G305	479	273	-	140	24,4				
doll	60	_	152	UML60G152	330	260		197	33,2				
C 38	00	-	305	UML60G305	543	348		197	52,0				
	100	-	152	UML100G15	2 360	305		240	53,0				
≥	20	8	152	UML20C152	276	267	70	130	19,5				
ато	20		305	UML20C305	464	207	70	700	28,2				
захватом	30	12	152	UML30C152	281	273	73	140	20,3				
C 38		,-	305	UML30C305	470		, ,		31,0				
l ~	60	24	152	UML60C152	325	348	72	197	50,0				
		24	305	UML60C305	469	0.0		.07	81,0				

Универсальные гидравлические домкраты Primus

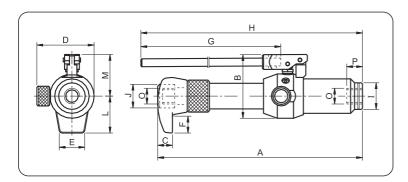
<u>Усилие:</u> **5** Т

ход: 150 мм

комплектующие:

- ZUN5 Ниппель для прикрепления проушины к верхней части цилиндра.
- ZUE5 Проушина для крепления на шток (без ниппеля) или на верхнюю часть цилиндра (ниппелем). Диаметр отверстия 22 мм.

ХАРАКТЕРИСТИКИ

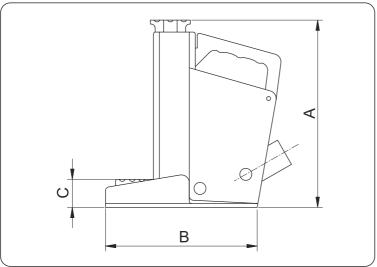

Компактные гидравлические подъемники со встроееным ручным насосом и цилиндром из стали и алюминия. Благодаря специальному резиновому масляному баку домкрат можно использовать в любом положении. Встроенный предохранительный клапан предотвращает перегрузки. Стандартный комплект включает защитное кольцо, подъемный механизм и гнездо. Вы можете поднимать грузы с опорой на головку или лапу (при помощи вспомогат. элементов). Колесо редукционного клапана позволяет постепенно опускать груз, что актуально при температурах от -30 до +60° С.

СФЕРЫ ПРИМЕНЕНИЯ

Дизайн подъемника PRIMUS позволяет применять его в любом рабочем положении, что значительно расширяет спектр тяжелых работ, которые может выполнять этот домкрат. Широко применяется в горнодобывающей пром-ти, судостроении, строительстве ж/д путей и т.д. Он также подходит для спасательных операций. Подъемник PRIMUS - обязательный элемент любого ремонтного цеха.

ДОП. ФУНКЦИЯ:

• S модель *(UMP5N150WS)* без скобы


Технические характеристики

Усилие толкания	Ход	Длина подъема за 1ход	Усилие рукоятки	Емкость камеры	. 4 .						Pas	ме	ры,	MN	И					Bec
Т	MM	MM	Н	CM ³		Α	В	С	D	Е	F	G	Н	1	J	L	М	0	Р	КГ
5	150	1,3	275	260	UMP5N150\	V 416	130	30	116	48	35	400	565	54	48	75	85	M32	2 2	0 9

Стальные гидравлические домкраты

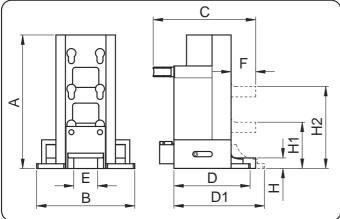
<u>Усилие:</u> 5 Т ход: 175 мм

ХАРАКТЕРИСТИКИ:

- Узкая передняя панель позволяет использовать домкрат в условиях ограниченного пространства. Высота захвата составляет только 41 мм над уровнем земли, что позволяет поднимать грузы с малой высоты.
- Захват изготовлен из высокопрочной стали, его движение точно направляется, он обладает высокой устойчивостью к эксцентричным нагрузкам.
- Вес груза- 5 т, подъем осуществляется на головке.или лапе.
- Боковая стабильность обеспечивается широкой подошвой.
- Удобство в эксплуатации. Домкрат удобен в работе даже в тяжелых условиях благодаря простому механизму управления насосом и предохранительным клапаном.
- Встроенный редукционный клапан предотвращает излишний ход поршня.

ПРИМЕНЕНИЕ

Этот домкрат с высоким классом безопасности может работать в сложных условиях. Он изготовлен из стали и алюминия, широко применяется для перемещения оборудования, в горной пром-ти, ремонте судов и строительстве железных дорог.


Технические характеристики

		на захват		Mo	Размеры, мм						
т т мм А В С Ширина	Т	Т	MM		Α	В	С	Ширина	КГ		
5 5 175 UMS5N175 327 265 41 118	5	5	175	UMS5N175	327	265	41	118	18		

Головка и лапа для домкрата

Усилие: 10-25 T

ход: 150 мм

Макс. раб. давление: 700бар

ХАРАКТЕРИСТИКИ

Домкрат с силовым приводом и регулируемой лапой предназначен для подъема крупных грузов из низкого положения. Он снабжен раздвижной подошвой для обеспечения максимальной устойчивости. Лапа может располагаться на трех уровнях с минимальным шагом 25 мм. Головка домкрата также может применяться для вертикального подъема, либо, в случае бокового расположения домкрата, для толкания.

ПРИМЕНЕНИЕ

Преимущественно для подъема, перемещения и выравнивания оборудования и низко расположенных тяжелых грузов.

Технические характеристики

Усилие толкания	Ход	Объем масла	Модель				Pi	азмер	ιы, Μι	М				Bec
т/кН	MM	CM 3		Α	В	С	D	D1	E	F	H I	H1	H2	КГ
10/111	150	238	UJ10	280	206	215	160	190	50	50	25	100	175	22
25 / 232	150	498	UJ20	314	271	290	230	265	70	70	30	110	190	45

Для приведения в действия домкрата UJ с силовым приводом рекомендуется ручной насос PL131 со шлангом SN20M

Гидравлический разделитель фланцевых соединений

F H A A A

Усилие: **5-10** Т

Раздвиг: **48-223 мм**

Макс. раб. давление: 700бар

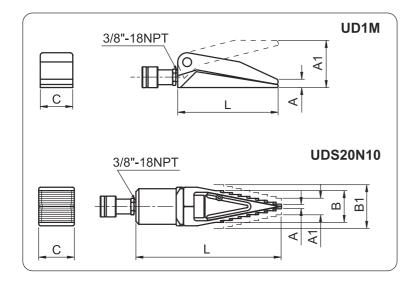
ХАРАКТЕРИСТИКИ

Разделитель UA EUROPRESS имеет азотированное покрытие (за исключением алюминиевых деталей), что повышает его прочность и коррозионную стойкость. Он комплектуется стандартным цилиндром CMI EUROPRESS, удобен в эксплуатации, характеризуется малым весом. Предлагаются модели на 5 и10 т, с раб. давлением 700 бар. Ширина раздвига регулируется от 48 до 223 мм. Поставляется со штуцером.

СФЕРЫ ПРИМЕНЕНИЯ

Нефтехимическое производство, обслуживание оборудования и судостроительных верфей - наиболее частые сферы применения.

Спрашивайте полный каталог продукции.



Усилие толкания	Раздвиг	Ход	Объем масла	Модель	Размеры, мм					Bec				
Т	ММ	MM	CM ³		Α	В	С	D	Ε	F	Н	1	J	КГ
5	3-25	50	35	UA5	70	220	48-161	19	143	80	35	227	40	4,0
10	4-35	50	80	UA10	100	300	64-223	3 32	15	3 90	50	31	5 50	9,5

Гидравлические разделители

Усилие: *1-20* Т

Макс. раб. давление: 700 бар

Характеристики и применение Эта модель предназначена для поднятия и поддержки оборудования, разъемных фланцев и рихтовки кузовов.

Все модели имеют пружинный возврат штока, всего предлагается 5 моделей.

- Разделитель мощностью 1 т (UD1M)
- •Разделитель мощностью 20 т (UDS20N10)
- Комплект разделителя UD1M + ручной насос PS100 + шланг SN10M **(UD1MC)**
- Комплект разделителя, включающий UD20N10 + ручной насос PL131 + шланг SN10M (UDS20C)

Технические характеристики

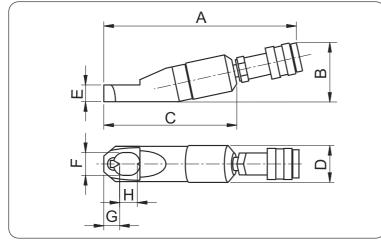
Модель	Описание	Усилие Размеры, мм					Bec		
		Т	Α	A1	В	B1	L	С	КГ
UD1M	Разделитель	1	14	80	-	-	170	52	3,5
UDS20N10	Разделитель	17	8	18	54	64	246	60	3,7

US

Гайкорезы

Усилие: 5 **-** 50 T

Резьба гайки:


M8 - M39

Макс. раб. давление: 700 бар

комплектующие:

• US#R комплект ножей

ХАРАКТЕРИСТИКИ

Серия гайкорезов US с двойным ножомпозволяют разрезать гайки за один прием (патентованная система EPP). Эта система позволяет сократить время резки в условиях ограничения места. Гайки могут быть из высокопрочной стали с твердостью до 44 HRC.

После операции резания поршень втягивается при помощи пружинного. возврата. Изношенные ножи можно затачивать или заменять.

ПРИМЕНЕНИЕ

Гайкорезы US предназначены для разрезания любых гаек, которые тяжело снять; для обслуживания труб и фланцев в горнодобывающей пром-ти, строительстве металлических конструкций и железных дорог, и т.д.

Технические характеристики

TCXHVI9CGKVIC XAPAKTCPVICTVIKVI														
Типы болтов	Размер шести гранных гаек	Усилие	Объем масла	Модель	Размеры, мм									Bec
MM	ММ	Т	CM		Α	В	С	D	Ε	F	Н	мак	сНмин	и КГ
М8чМ12	1341	9	5	12 US1319	218	62	137	42	19	26	18	23	8	1.2
М12чМ16	1942	24	11	25 US1924	243	73	161	59	25	34	22	28	12	2.3
М16чМ22	2443	32	16	48 US2432	265	78	180	70	30	41	24	36	16	3.2
М22чМ27	3244	11	22	72 US3241	304	88	222	84	35	55	28	45	22	5.1
М27чМ33	4145	50	32	119 US4150	351	118	283	104	42	70	32.5	54	27	10.4
М33чМ39	5046	50	50	220 US5060	403	139	333	124	52	82	38	64	33	17,5

При резании необходимо следить, чтобы режущая кромка находилась строго перпендикулярно разрезаемой поверхности гайки. Это позволит избежать боковых нагрузок и повреждений гайкореза или ножей.

UT

Натяжители для болтов - 1000 бар

В целях безопасности нужно следить, чтобы резьбовые части болтов выступали за плоскость гайки по меньшей мере на величину диаметра натяжителя.

Если вы используете систему натяжения и выбираете различные режимы (50%, 33% или даже 5% точек) из соображений экономии места, нужно обращать внимание на расположение натяжителей друг относительнодруга.

Максимальное раб. давление составляет 1000 bar; для меньших нагрузок давление соответственно снижается.

ХАРАКТЕРИСТИКИ

Натяжители болтов EUROPRESS состоят из гидравлической части с опорой (мостом), к которой крепится съемник и многоугольный гайковерт различных размеров. Это позволяет работать с разными тягами и оптимизировать количество натяжителей. По своим техническим характеристикам они делятся на:

Ряд UTN, чье основное преимуществокомпактный размер. Кроме того, эта модель обеспечивает тяговое усилие около 70% от точки разрыва стального болта 8.8 или больше (макс. значение резьбы см. в таблице).

Ряд UTH, создающая тяговоге усилие, равное 70% предельного напряжения сдвига стального болта 10.9 максимального размера (макс. значение резьбы см. в таблице).

Азотированное покрытие (Nitreg) всех продуктов EUROPRESS позволяет применять их на открытом воздухе или в агрессивных средах благодаря исключительной коррозионной стойкости.

ПРИМЕНЕНИЕ

Преимуществом натяжения является возможность нагружения тяги в требуемых границах, что позволяет избежать потерь силы вследствие трения, как во время традиционного затягивания болтов.

Удобство в эксплуатации, возможность экономить время и рабочую силу, а также точность делают эту технологию особенно привлекательной в тех областях, где точное соединение или жесткость фланцев обусловливает безопасность людей и обрудования.

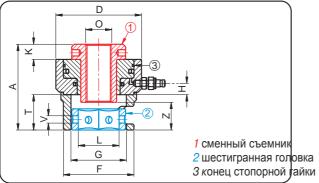
Применение преимущественно в промышленности, нефтегазовом секторе и во всех случаях, когда требуется особая точность при заворачивании гаек или натяжении. Успешно используются для затягивания клапанов, насосов, теплообменников и т.д.

UT

Натяжители болтов - 1000 бар

Таблица компонентов

Натяжитель болтов в комплекте	Гидравлич. часть	Резьбовой съемник	Шестиугольная головка
UTN 4864M48		UTB484	UTC48
UTN4864M56	UTN4864	UTB564	UTC56
UTN 4864M64		UTB644	UTC64
UTN 6476M64		UTB645	UTC64
UTN6476M72	UTN6476	UTB725	UTC72
UTN 6476M76		UTB765	UTC76
UTN 76100M76		UTB766	UTC76
UTN76100M80	UTN76100	UTB806	UTC80
UTN 76100M90		UTB906	UTC90
UTN 76100M100		UTB1 006	UTC100


Натяжитель болтов в комплекте	Гидравлич. часть	Резьбовой съемник	Шестиугольная головк
UTH1624M16		UTB161	UTC16
UTH1624M20	UTH1624	UTB201	UTC20
UTH1624M24		UTB241	UTC24
UTH2739M27		UTB272	UTC27
UTH2739M30	UTH2739	UTB302	UTC30
UTH2739M36		UTB362	UTC36
UTH2739M39		UTB392	UTC39
UTH3952M39		UTB393	UTC39
UTH3952M42	UTH3952	UTB423	UTC42
UTH3952M52		UTB523	UTC52
UTH4864M48		UTB484	UTC48
UTH4864M56	UTH4864	UTB564	UTC56
UTH4864M64		UTB644	UTC64
UTH6476M64		UTB645	UTC64
UTH6476M72	UTH6476	UTB725	UTC72
UTH6476M76		UTB765	UTC76
UTH76100M76		UTB766	UTC76
UTH76100M80	UTH76100	UTB806	UTC80
UTH76100M90		UTB906	UTC90
UTH76100M100		UTB1006	UTC100

UT

Натяжители болтов - 1000 бар

Усилие: *259-4369* кН

ход: 15 мм

Макс. давление: 1000 бар

<u>Резьбовой съемник: M16-</u>M100

		_		2 шестигранная головка <u>гезьоовой съемник. ТИТТО-</u> ТИТТОО 3 конец стопорной гайки —											
Техн. характеристики												ехн	н. хараі	ктерист	ИКИ
Усилие	давление	Объем масла	Болт	Модель									Резьбовой съемник	Шестигр. головка	Bec
кН	бар	CM ³	ММ		Α	ШD	ШР	ШG	ì H	Т	Ζ	K	0	L ШV	КГ
659	519		M48	UTN4864M4	18								M48x5	76	
909	715	191	M56	UTN4864M:	6 85	195	165	130	20	80	65	35	M56x5,5	86	24
1198	942		M64	UTN4864M	54								M64x6	96	12,5
1198	626		M64	UTN6476M	54								M64x6	96	
1549	810	287	M72	UTN6476M	2 00	240	200	150	25	95	80	40	M72x6	106	37
1742	910		M76	UTN6476M	76								M76x6	111	
1742	601		M76	UTN76100M	76								M76x6	111	
1946	672		M80	UTN76100M	80								M80x6	116	20,5
2504	864	438	M90	UTN76100M	90 30	295	245	190	30	115	510	0 45	M90x6	131	59
2898	1000		M100	UTN76100M1	00								M100x	5 146	
													1440.0	04.5	T
99	381			UTH1624M	-								M16x2		
154	595	39	M20	UTH1624M		85	70	55	22	40 .	25	20		30,5 8,5	3,4
222	857		M24	UTH1624M	_								M24x3		
289	542		M27	UTH2739M	-								M27x3		
353	661		M30	UTH2739M									M30x3,		
515	963	80		UTH2739M		125	100	80	21	60	45	25		55,5 10,5	7,5
534	1000			UTH2739M									M39x4		-
615	632		M39	UTH3952M									M39x4		l
706	727	146		UTH3952M		170	135	110	17,	5 70	55	30			15
972	1000		M52	UTH3952M									M52x5		-
928	553	050	M48	UTH4864M									M48x5		
1278	762	252		UTH4864M		215	165	130	20	80	65	35		86 12,5	27
1679	1000			UTH4864M									M64x6		
1685	701	000		UTH6476M			000	4-0					M64x6		-
2179	907	360		UTH6476M		255	200	150	25	95	80	40	M72x6	106	39
2403	1000			UTH6476M							\vdash		M76x6		-
2450	561	655		UTH76100M		0.46	0.45	400		اررا			M76x6		
2736	626	655		UTH76100M		340	245	190	30	115	10	U 45		116 20,	5 71
3522	806	-		UTH76100M									M90x6		
4369	1000		M100	UTH76100M1	UU								M100x	5 146	

НАТЯЖНЫЕ СИСТЕМЫ

Ручные насосы, блоки питания, комплектующие – 1000 бар

КАК ВЫБРАТЬ СИСТЕМУ

Систему следует выбирать по объему масла для натяжителя болтов или блока натяжителей болтов и количеству оборотов привода. Различные насосы EUROPRESS с раб. давлением 1000 можно комбинировать в зависимости от объема камеры, мощности и типов клапанов. К насосу подбирается манометр, шланг с раб. давлением не менее1000 бар, а также штуцеры и фиттинги.

Рабочий механизм и	одноступ.	двухступ.	расход	камера	клапан	редукц. клапа
PS10010G	•		1,00 cm ³	0,421	/	/
PL16#10+ZPS53+G16		•	32-1,6 cm	2,4/4,3/8,01	/	/
MLP2#TA+ZPS53+G16	/	/	0,5-0,1 л/мин	2,4/5,0/10,01	ножной <i>2/3</i>	/
MEC#M21GRT	•		0,6 л/мин	5/10/20/401	ручной <i>2/3</i>	•

Штуцеры K13X

Шланги SN#FT (со вспом. штуцером с внутр. резьбой)

All EUROPRESS фиттинги рассчитаны на раб. давление 1000 бар. Фиттинги

Прессы

Специальный пресс на 50 т, выполненный на заказ

ХАРАКТЕРИСТИКИ

Стальной пресс с гидравлическим механизмом производятся на заказ, их характеристики дорабатываются по требованию заказчика. Гидравлический механизм изготовлен из стандартных комплектующих с одно- или двухступенчатым цилиндром, одно- или двухступенчатым насосом и манометром для обеспечения безопасности системы.

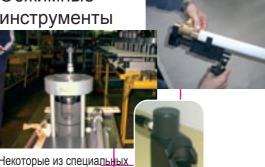
Наш технический отдел может разработать специальное оборудование на имеющейся базе по заказу.

Продукция специального назначения EUROPRESS

Подъемники

Строительство "Второго моста через Панамский Канал- Республика Панама", для которого EUROPRESS поставлял компоненты гидравлических систем которые удерживали сегменты конструкции проезжей части моста (Панама, июль 2003 г.)

Подъем железнодорожной станции в Анверпене для строительства метро. (Антверпен, Бельгия, 2000 г.)


Натяжная система fдля поддержания крыши во время строительства нового здания концертного зала в Риме. В этом случае использовались цилиндры для натяжения, специально разработанные Euro Press для этого случая. (Рим, Италия, 2001 г.)

Строительство "Транспортной системы центрального региона Венесуэлы, Первый этап - Каракас-Медио", были построены несколько систем металлических гидравлического оборудования EUROPRESS

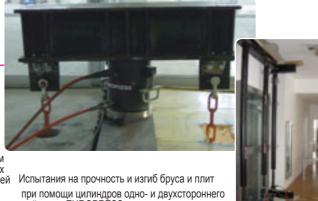
перекрытий для виадуков, которые опускались при помощи (Каракас, Венесуэла, июнь 2003 г.)

Обжимные инструменты

Некоторые из специальных обжимных иинструментов были разработаны и изготовлены **EUROPRESS**

перекрытий при реконструкции казино Campione d'Italia Casino (Campione d'Italia - 2003 r.)

Подъем и точное позиционировани



Съемники

Цилиндры спец. серии CMF

установленные на съемном оборудовании инжекторных систем диельных двигателей

при помощи цилиндров одно- и двухстороннего действия EUROPRESS.

Продукция специального назначения EUROPRESS

Синхронный подъем

Алюминиевые телескопические цилиндры и блок питания Split Flow для синхронного подъема военных машин. Синхронный подъем вагона бурильной установки

Р&Н 4100 иР&Н 2800 для планового обслуживания тупора и поворотной площадки (Перу, декабрь 2002 г.)

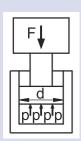
Системы центрирования

Синхронный подъем Synchrolift для переделки фундаментов (Германия, 2003 г.)

Системы центрирования из цилиндров серии CGG для детектора частиц, электронные кольца LHC (CERN Женева, начало проекта в 2007 г.)

Перенос вагонов на рельсы

Перенос вагонов на рельсы. Эта система позволяет перемещать вагоны на рельсы при помощи телескопических цилиндров двустороннего действия EUROPRESS.


Опорные платформы для 30 эоловых генераторов мощностью 30 МВт, установленных в Северном море и 6 CGS50N100 на глубине 10-15 м под водой.

В этом разделе вы найдете информацию и рекомендации по технике безопасности и правильному выбору гидравлического обрудования высокого давления EUROPRESS. См. разделы КАК ВЫБРАТЬ ЦИЛИНДР (стр. 7), КАК ВЫБРАТЬ НАСОС (стр. 42), и ЭЛЕМЕНТЫ ГИДРАВЛИЧЕСКОЙ СИСТЕМЫ (стр. 44). Мы надеемся, что эти страницы окажутся полезными для вас, однако, если вам понадобится более подробная информация, специалисты из нашего Технического отдела помогут найти решение, оптимальное по цене, производительности и удобству.

Основы расчетов по гидравлике

Примеры расчетов служат основой для применения гидравлических систем.

1. Усилие гидравлического цилиндра Усилие гидравлического цилиндра зависит от давления в цилиндре, р, оказываемого на поршень.

Формула.
$$F(\kappa r) = p(6ap) A(cM^2) [rдe \ g = \frac{10 \ N.m}{s^2}]$$
 означает:

F = сила, действующая на цилиндр, кг p =рабочее давление, бар

A =рабочая площадь цилиндра,см2, рассчитывается из диаметра цилиндра:

$$A(cm^2) = \frac{d(mm^3).?}{400} (?=3,1416)$$

Пример 1:

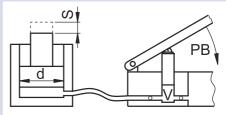
Цилиндр CGG100P50 должен поднять 72 т. Каково его номинальное рабочее давление?

$$A(cm^2) = \frac{d(mm^3).?}{400}$$
 диаметр поршня $CGG100P50$
 $\Rightarrow d = 130$ мм
$$\frac{130^2. 3,1416}{400 \text{ cm}^2 = 132,7 \text{ cm}^2}$$
 $\Rightarrow A = \frac{6(mm^3).?}{400 \text{ cm}^2 = 132,7 \text{ cm}^2}$
 $\Rightarrow P(6ap) = \frac{F(Kg)}{A(cm^2)}$ при $F = 72 \text{ T} = 72.000 \text{ K}$
 $\Rightarrow P = \frac{72.0006}{132.7}$

Необходимое рабочее давление 542 бар.

Пример 2:

ЦилиндрСМI10N100 поднимает груз; манометр показывает раб. давление 520 бар. каков вес груза?


$$A(cm^2) = \frac{d(mm^3).?}{400}$$
диаметр поршня CMI10N100 $\Rightarrow d = 45 \text{ мм}$

$$\Rightarrow A = \frac{45^2.3,1416}{400} \text{cm}^2 = 15,9 \text{ cm}^2$$
 $F(\kappa r) = p(6ap). A(cm2)$
 $F = (520.15,9) \kappa r = 8270 \kappa r$

Вес поднимаемого груза 8 270 кг.

2. Насосы привода

Когда гидроцилиндр приводится в действие насосом. плунжер цилиндра проходит определенный путь за каждый цикл работы насоса. Это расстояние зависит от площади рабочей поверхности цилиндра и расхода насосом масла на 1 ход. При использовании двух ручных насосов цилиндр без нагрузки приводится в действие при низком давление масла VLP. для перемещения цилиндра с грузом требуется высокое давление масла VHP.

Формула:
$$S(MM) = \frac{V(cm)^6 .10}{A(cm)^6}$$

S = перемещение цилиндра, мм

V = расход масла насосом на 1 ход, см3

A = площадь цилиндра, см

Пример 3:

Цилиндр CMI10N100 приводится в действие ручным насосом PL131. На какое расстояние перемещается груз при таком приводе?

→
$$A = 15.9 \text{ cm}^2 \text{ (см пример 2)}$$

 $S(MM) = \frac{V(cm^3).10}{A(cm^2)}$

PL131, расход масла на 1 ход равен

V=3,5 см³

→
$$S = \frac{3.5.10}{15.9} \text{ MM} = 2.2 \text{ MM}$$

Поддерживаемый грух проходит 2,2 мм ха один полный ход насоса.

Пример 4:

Цилиндр CGG100P50 (ход S= 50 мм) приводится в действие при помощи ручного насоса PL162. Необходимо учесть ход без нагрузки L = 30 мм. Сколько циклов насоса РВ нужно для полного выдвижения цилиндра?

для хода без нагрузки

$$S_{BP}(mm) = A (cM)$$

PL162 с LP-расходом масла на 1 ход

→
$$V_{BP} = 32cm^3$$

 32.10
→ $S_{BP} = 132.7$ $MM = 2.4 MM$

Кол-во циклов насоса в ненагруженном режиме рассчитывается путем деления ненагруженного хода на расстояние, проходимое цилиндром за 1 раб.

кенного хода на расстояние, проходимое цилиндром за 1 раб.

$$PB_{BP} = \frac{L\ (mm)}{S_{BP}(\text{мм})} = \frac{30}{2,4} = 13 \text{ раб.}$$
 циклов насоса $V_{\underline{AP}\ (c\vec{m})}$. 10 для нагруженного хода: $S_{\underline{AP}\ (MM)} = \frac{V_{\underline{AP}\ (c\vec{m})}}{A\ (c\vec{m})}$

PL162 с расходом масла на 1 ход НР

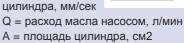
→
$$V_{AP} = 3 \text{ cm}^3$$

→ $S_{AP} = \frac{3.10}{132,7} \text{ mm} = 0.23 \text{ mm}$

Кол-во раб. циклов насоса с нагрузкой рассчитывается путем деления оставшегося ходана расстояние, пройденное насосом за 1 раб. цикл:

$$PB_{AP} = \frac{H(MM) - L(MM)}{S_{AP}(mm)} = \frac{50 - 30}{0.23} = 87$$
 циклов
Всего = PB $_{BP} + PB_{AP} = 13 + 87 = 100$

3. Скорость выдвижения


Время, необходимое гидравлическому цилиндру, приводимому в действие электронасосом, для выдвижения, зависит от рабочей площади цилиндра и расхода масла электронасосом. При использовании двухступенчатых насосов, следует учитывать объем масла для выдвижения цилиндра без нагрузки (QLP), и объем масла (QHP) для движения цилиндра с нагрузкой.

Формула: V(M/CEK) =

Q(л/мин).166,67

 $A(cm^2)$

Пример 5:

Цилиндр CGG100P5 приводится в действие электронасосом MEF10M31. Какова скорость цилиндра при полном выдвижении?

→
$$A = 132,7$$
 cm² (cm. пример1)

 $V(MM/CeK) = Q(\Pi/MUH).166,67$

 $A(cm^2)$ при расходе масла MEF10M3 → Q = 1,8 л/мин

→
$$V = \frac{1.8.166.67}{132.7}$$
 MM/CeK = 2.2 MM/CeK

Скорость цилиндра при полном выдвижении 2,2 мм/сек

Единицы измерения

Данные, приведенные в настоящем каталоге, выражены в единицах СИ. Таблица ниже поможет облегчить перевод единиц в другие используемые системы единиц измерения.

1 fap = 14.5 psi1 МПа = 10 бар 1 H/cm2 = 0.1 fap1 кгф/см2 = 0.9806 бар 1 psi = 0.0689 бар

1 кВт = 1,359 л/с1 kBt = 0.735 kW

1 кH = 0.10197 T1 H = 0,10197 кгф 1 H = 0.2248 фунт/фут 1 фунт/фут = 0,13825 кгф/м

1 HM = 0,10197 кгф/м

1 бар = 0,1 MΠa $1 \text{ fap} = 10 \text{ H/cm}^{-2}$ 1 бар = 1,0197 кгф/см 2 1 т (англ.) = 907,18 кг 1 т (англ.) = 2000 фунтов

1 галлон (Великобр.) = 4,546 л 1 галлон (США) = 3,785 л 1 дюйм3 = 16,387 см 1 дюйм2 = 6,451 см² 1 дюйм = 25,4 см

Техника безопасности

• Инструкции по эксплуатации и обслуживанию

Цилиндры

<u>А</u> Основание цилиндра должно опираться на прочную опору.

М Не используйте цилиндр без крышек, т.к. они распределяют нагрузку и защищают поршень от повреждений.

 Д Цилиндр должен находиться в контакте с грузом.

<u>А</u> Не поднимайте эксцентричные грузы, которые могут повредить цилиндр. Использование специальной крышки позволяет компенсировать нагрузки ± 5°.

№ Никогда не работайте рядом с грузом, поддерживаемым только гидросистемой. Стопорную гайку цилиндра нужно постоянно навинчивать на гильзу цилиндра в ходе подъемных работ.

<u>N</u> Нельзя залезать под груз, чтобы поддержать его механически.

Ж Нельзя применять гидравлическое оборудование при температурах выше 65°С (150°F).

<u>EPP</u> компоненты имеют антикоррозийное покрытие и могут работать в условиях высокой влажности и морских условиях. За более подробной информацией обращайтесь в технический отдел.

Техника безопасности

А_Не допускайте слишком быстрого возврата нагруженного поршня. Быстрый возврат создает гидравлический удар. Медленно поверните ручной насос и редукционный клапан блока питания. Если клапаны 4/3 используются в статическом положении, рекомендуется вставить игольчатый клапан между распределительным клапаном и цилиндром для управления скоростью опускания груза.

<u>N</u> Никогда не превышайте максимальное рабочее давление, указанное на цилиндре.

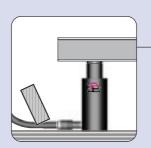
<u>D</u> Не используйте компоненты для нагрузок, превышающих номинальные. Для проверки давления используйте манометр.

ЦИЛИНДРЫ EUROPRESS ДОЛЖНЫ ИСПОЛЬЗОВАТЬСЯ С БОЛЬШИМ ЗАПАСОМ

ПРОЧНОСТИ. ПРИ ВЫБОРЕ ЦИЛИНДРА СЛЕДУЕТ ЗАКЛАДЫВАТЬ НЕ МЕНЕЕ 20% ОТ ПРЕДПОЛАГАЕМОЙ НАГРУЗКИ.

• Гидравлические шланги

<u>В</u> Перед соединением штуцеры нужно протереть, во избежание загрязнения на неиспользуемые штуцеры следует надевать пылезащитные колпачки.


<u>А</u> Следите, чтобы шланги не попадали под груз.

<u>О</u> Цилиндр можно отсоединять от насоса только после полного возврата штока. retracted.

<u>D</u> *Не*льзя поднимать элементы гидросистемы за шланг.

<u>D</u>о Нельзя перекручивать шланги. Радиус изгиба должен быть не менее 70 мм. Нельзя наступать или ронять на шланг тяжелые предметы.

Техника безопасности

Ручные насосы

<u>N</u> Нельзя заправлять насос, если подсоединенный к нему цилиндр частично выдвинут. Заправлять насос нужно только до указанного уровня.

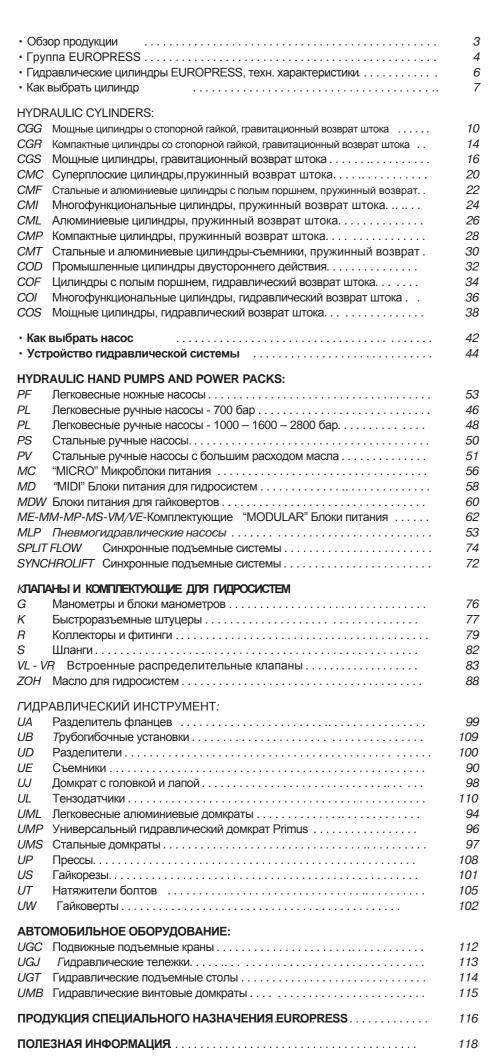
 \underline{W} e Мы рекомендуем использовать только гидравлическое масло EPP. Ero ïðåêðàñíaя âÿçêîñòù è ñìàçî÷íûe ñâîéñòâà обеспечивают ìàêñèlàëüíóþ ïðîèçâî-äèòåëüííñòù è ñõîê ñëóæáû îáîðóäîâàíèÿ.

Рабочая температура не должна превышать 60°С. При более высоких температурах используйте другие масла или обратитесь в Технический отдел.

<u>D</u>o Нельзя использовать удлинители для ручки насоса.

W е Мы рекомендуем внимательно ознакомиться с инструкциями по технике безопасности перед работой.

<u>U</u> Редукционный клапан нужно закрывать руками, инструмент может повредить его.


Используйте масла EPP, чтобы сохранить прокладки.

Настоящий каталог был подготовлен нашими специалистами. Вся представленая в нем информация была проверена. Несмотря на это и благодаря постоянному усовершенствованию и расширению номенклатуры EUROPRESS, мы оставляем за собой право изменить или убрать из каталога любой из продуктов Информация вданном каталоге может быть изменена без предварительного уведомления. Допускаются незначительные расхождения с заявляемыми характеристиками. если размеры имеют принципиально важное значение, пожалйуста, свяжитесь с EUROPRESS.

Любое использование и полное или частичное воспроизводство настоящего каталога запрещено. (чертежи, изображения, фотографии, тексты, логотипы), без письменного разрешения производителя.

COMEPXAHZE

2

EURO PRESS WAOM Disma,187042 CARASCO (GE) ITALY Tel 0039 0185 35 122/10039 0185 35 11 38

ПОЛЕЗНАЯ ИНФОРМАЦИЯ

Качество и гарантия

Сертификация качества

EURO PRESS PACK разрабатывает и производит продукцию под жестким контролем производства. Это означает, что и проектирование и производство нашей продукции планируется так, чтобы наши клиенты получили продукцию самого высшего международными стандартами качества, в частности:

СЕРТИФИКАТ СИСТЕМЫ КАЧЕСТВА ISO 90

Сертификация проектирования, производства, сбыта и ремонта компонентов систем высокого давления.

ANSI B30.1

Все цилиндры соответствуют требованиям стандарта, введенного Американским национальным институтом стандартизации (ANSI) (кроме стальных CGS#P#, CGG#P#, и CGR).

EN 60204

Электрическая оснастка оборудования изготовлена по стандарту EN 60204 SAE 100R10

Шланги с раб. давлением 700 бар не соответствуют этой норме.

CEE DIRECTIVES: 89/392 - 72/23 - 89/336

Все наши блоки питания соответствуют норме СЕЕ

Знак СЕ

CE

Вся продукция EUROPRESS соответсвует европейским директивам по безопасности.

ГАРАНТИЯ EUROPRESS

ЗА ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

На всю продукцию EUROPRESS распространяется одногодичная гарантия на дефекты материала и качество работы. Гарантия не распространяется на повреждения в результате естественного износа, неправильной эксплуатации, либо использования неподходящих жидкостей, модификаций и/или замен (включая повреждения вследствие ремонта людьми, не имеющими лицензии EURO PRESS PACK),и повреждений во время транспортировки.

Чтобы сообщить о недостатках, дефектах, несоответствиях, и/или потребовать гарантийного обслуживания, покупатель должен уведомить об этом EURO PRESS PACK в письменном виде в течение 5 дней послу получения товара, или, в случае скрытых дефектов, в течение 5 дней после обнаружения дефекта. Прежде чем вернуть товар EURO PRESS PACK для исправления дефектов по гарантии, покупатель должен получить согласие EURO PRESS PACK. Если PRESS PACK убеждается в том, что товар имеет дефект, EURO PRESS PACK, он произведет бесплатный ремонт или замену. Транспортные издержки на доставку товара от EURO PRESS PACK относятся на счет покупателя.

Если вмешательство персонала и авторизованных дистрибьютеров EURO PRESS PACK требуется на месту установки замененных компонентов (при подтвкерждении, что на данный случай распространяется гарантия) транспортные издержки персонала и время оплачивает покупатель, а собственно время работы специалистов оплачивает EURO PRESS PACK или его авторизованный представитель.

НАСТОЯЩАЯ ГАРАНТИЯ ЯВЛЯЕТСЯ ЕДИНСТВЕННЫМ ЗАЯВЛЕНИЕМ О ГАРАНТИИ, ПРИЗАННЫМ EURO PRESS PACK, И ЗАМЕНЯЕТ ВСЕ ПРОЧИЕ ПРЯМЫЕ ИЛИ КОСВЕННЫЕ ГАРАНТИИ ОТНОСИТЕЛЬНО ПРОДУКЦИИ,ПРОИЗВЕДЕННОЙ И РЕАЛИЗОВАННОЙ EURO PRESS PACK, ИЛИ ИЗГГОТОВЛЕННОЙ ПО СПЕЦИАЛЬНОМУ ЗАКАЗУ.

НАСТОЯЩИМ ЗАЯВЛЯЕТСЯ, ЧТО ЛЮБЫЕ РАСХОДЫ И/ИЛИ ОТВЕТСТВЕННОСТЬ EURO PRESS PACK НЕ МОГУТ БЫТЬ ЗАЯВЛЕНЫ В СЛЕД. СЛУЧАЯХ:

- ЛЮБЫЕ СЛУЧАЙНЫЕ ПОВРЕЖДЕНИЯ ИЛИ ПОВРЕЖДЕНИЯ, ВЫЗВАННЫЕ ДЕФЕКТНЫМИ ИЛИ НЕСООТВЕТСТВУЮЩИМИ ПРОДУКТАМИ, НЕБРЕЖНОСТЬЮ И ДР. ПРИЧИНАМИ
- ПОВРЕЖДЕНИЯ, ВЫЗВАННЫЕ ДРУГИМИ ПРИЧИНАМИ, ВКЛЮЧАЯ, НО НЕ ОГРАНИЧИВАЯСЬ НЕБРЕЖНОСТЬЮ EURO PRESS PACK
- ЛЮБЫЕ ДРУГИЕ ОБЯЗАТЕЛЬСТВА ИЛИ ОТВЕТСТВЕННОСТЬ, ПРОИСТЕКАЮЩИЕ ИЗ НАРУШЕНИЯ КОНТРАКТА ИЛИ УСЛОВИЙ ГАРАНТИИ. НАСТОЯЩАЯ ГАРАНТИЯ ВСТУПАЕТ В СИЛУ ТОЛЬКО ПОСЛЕ ПОЛНОЙ ОПЛАТЫ ПОЛУЧЕННОГО ТОВАРА, ВКЛЮЧАЯ СЧЕТА-ФАКТУРЫ

Максимальная сумма, выплачиваемая EURO PRESS PACK за ущерб, ограничивается уплаченной за товар ценой и не может превышать ее

Срок действия май 2001

EURO PRESS WACK Disma,187042 CARASCO (GE) ITALY Tel 0039 0185 35 12240039 0185 35 11 38

123