

SEAT DIMENSIONS: D-10B

CR DIRECT OPERATED PRESSURE CONTROL VALVE SERIES 22

CARTRIDGE TYPE

- p max 350 bar
- Q max 50 l/min

OPERATING PRINCIPLE

- ", The CR valve is a direct operated pressure control valve cartridge type that can be used in blocks or panels with type D-10B seat.
- ", It is normally used to control the maximum pressure in the hydraulic circuits or as a limiting device for pressure peaks generated during hydraulic actuator movement variation.
- " It is available in "ve different pressure control ranges up to 350 bar.
- " The circuit pressure acts on the shutter which is directly loaded by a spring on the opposite side. Once the set pressure is reached, the shutter opens, and discharges the excess "ow in port T connected directly to the reservoir.
- ", The pressure can be adjusted by a screw, usually supplied as the countersunk hex type, equipped with locking nut and maximum adjustment limiter.

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

Max working pressure	bar 350				
Minimum controlled pressure and pressure drop	see	diagram			
Maximum "ow rate	l/min 50				
Ambient temperature range	°C	-20 / +50			
Fluid temperature range	°C	-20 / +80			
Fluid viscosity range	cSt	10 ÷ 400			
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15				
Recommended viscosity	cSt	25			
Mass	kg 0,16				
Surface treatment: electrolytic zinc covering	Fe // Zn 8 // B EN 12329				

HYDRAULIC SYMBOL

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

21 110/110 ED

SEAT DIMENSIONS: D-10C

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

Max working pressure	bar 350			
Minimum controlled pressure and pressure drop	see o	diagram		
Maximum flow rate	l/min	100		
Ambient temperature range	°C	-20 / +50		
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt 10 ÷ 40			
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15			
Recommended viscosity	cSt	25		
Mass	kg 0,16			
Surface treatment:electrolytic zinc covering	Fe // Zn 8 // B EN 12329			

CRQ PILOT OPERATED PRESSURE CONTROL VALVE SERIES 12

CARTRIDGE TYPE

- p max **350** bar
- **Q** max **100** l/min

OPERATING PRINCIPLE

- ", The CRQ valve is a pilot operated pressure control valve cartridge type that can be used in blocks or panels with D-10C type seat.
- ", It is normally used to control the hydraulic circuit pressure and allows use of the entire flow of the pump even at pressure values near the set value.
- " It is available in four different pressure control ranges up to 350 bar.
- " It consists of a main balanced type spool and a pilot stage. The main spool, normally closed, opens when the circuit pressure exceeds the set value generated by the pilot stage, discharging the excess flow in port T, directly connected to the tank.
- ", The pressure is adjustable with a screw, usually supplied as the countersunk hex type, equipped with locking nut and with maximum adjustment limiter.

HYDRAULIC SYMBOL

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

21 110/110 ED

21 111/214 ED

SEAT DIMENSIONS: 7/8-14 UNF-2B (SAE - 10)

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

Max working pressure	bar 350		
Minimum controlled pressure and pressure drop	see	diagram	
Maximum flow rate	l/min	120	
Ambient temperature range	°C	-20 / +60	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt 10 ÷ 400		
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt 25		
Mass	kg 0,2		
Surface finishing: electrolytic coating	ISO 2081 - Fe/Zn12/A		

PRK10 PILOT OPERATED PRESSURE CONTROL VALVE SERIES 10

CARTRIDGE TYPE

seat 7/8-14 UNF-2B (SAE - 10)

p max 350 bar
Q max 120 l/min

OPERATING PRINCIPLE

- ", The PRK10 valve is a pilot operated pressure control valve, cartridge type, that can be used in blocks or panels with 7/8-14 UNF-2B (SAE 10) type seat.
- ", It is normally used to control the hydraulic circuit pressure and allows use of the entire flow of the pump even at pressure values near the set value.
- " It is available in four different pressure control ranges from 6 to 350 bar.
- " It consists of a main balanced type spool and a pilot stage. The main spool, normally closed, opens when the circuit pressure exceeds the set value generated by the pilot stage, discharging the excess flow in port T, directly connected to the tank.
- ", The pressure is adjustable with a screw, usually supplied as the countersunk hex type, equipped with locking nut or with a knob.

HYDRAULIC SYMBOL

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

21 120/112 ED

SEAT DIMENSIONS: D-10E

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

DBV DIRECT OPERATED PRESSURE CONTROL VALVE SERIES 10

CARTRIDGE TYPE

- **p** max **380** bar
- **Q** max **120** l/min

OPERATING PRINCIPLE

- ", The DBV valve is a direct operated pressure control valve cartridge type that can be used in blocks or panels with seat.
- ", It is normally used to control the maximum pressure in the hydraulic circuits or as a limiting device for pressure peaks generated during hydraulic actuator movement variation.
- " It is available in differents pressure control ranges up to 300 bar.
- ", The circuit pressure acts on the shutter which is directly loaded by a spring on the opposite side. Once the set pressure is reached, the shutter opens, and discharges the excess flow in port T connected directly to the reservoir.
- " The pressure can be adjusted by a screw, equipped with locking nut and maximum adjustment limiter.

Max working pressure	bar	380	
Minimum controlled pressure and pressure drop	see o	diagram	
Maximum flow rate	l/min	120	
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt 10 ÷ 40		
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25	
Mass	kg	0,25	
Surface treatment:electrolytic zinc covering	Fe // Zn 8 // B EN 12329		

HYDRAULIC SYMBOL

21 120/112 ED

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com · e-mail: sales.exp@duplomatic.com

21 140/111 ED

SEAT DIMENSIONS D-10D

PERFORMANCES (working with mineral oil of viscosity of 36 cSt a 50°C)

Maximum operating pressure	bar	350	
Characteristic p: fixed adjustment variable adjustment	bar	4 - 8 7 ÷ 33	
Maximum flow rate	l/min	40	
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25	
Mass:	kg 0,2		
Surface treatment : electrolytic zinc covering	Fe // Zn 8 // B EN 12329		

PCK06 TWO- AND THREE-WAY PRESSURE COMPENSATOR WITH FIXED OR VARIABLE ADJUSTMENT

SERIES 10

CARTRIDGE TYPE

- p max 350 bar
- Q max 40 l/min

OPERATING PRINCIPLE

- ", The PCK06 valve is a two or three-way pressure compensator, cartridge type, for block or manifold application.
- , It keeps the pressure drop (characteristic $\,p)$ between the $\,P$ and the X pilot connections, at a constant level.
- " It is normally used together with proportional directional valves, in order to control the flow rate independently of the pressure variations.
- ", The setting of the variable adjustment compensator can be varied from 7 to 33 bar; adjustment can be operated either via a countersunk hex adjustment screw, or via an adjustment knob.
- " The fixed adjustment version can be supplied with a characteristic p setting of either 4 or 8 bar.

HYDRAULIC SYMBOLS

1.1 - Two-way compensator identification code

1.2 - Three-way compensator identification code

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

2.1 - Two-way compensator characteristic curves

FLOW RATE - PRESSURE Q = f (p)

Δp [bar] 40 30 20 10 20 40 20 10 20 30 40 Q [//min]

PRESSURE DROPS $\Delta p = f(Q)$

2.2 - Three-way compensator characteristic curves

FLOW RATE - PRESSURE Q = f (p)

PRESSURE DROPS $\Delta p = f(Q)$

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

21 200/110 ED

HYDRAULIC SYMBOL

CD1-W DIRECT OPERATED PRESSURE CONTROL VALVE SERIES 10

THREADED PORTS

- p max 350 bar
- Q max 3 l/min

OPERATING PRINCIPLE

- It is used also for remote piloting of control valves and two-stage pressure reducers.
- It is available in four different pressure control ranges up to 350 bar.
- It is normally supplied with a countersunk hex adjustment screw, a locking nut and a maximum adjustment fastener.

PERFORMANCE RATINGS (measured with mineral oil of viscosity 36 cSt at 50°C)

Maximum operating pressure	bar 350		
Minimum controlled pressure	see diagram		
Maximum flow rate	l/min 3		
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt 10 ÷ 400		
Recommended filtration		according to ISO4406:1999 class 20/18/15	
Recommended viscosity	cSt	25	
Mass	kg	1,2	

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

HYDRAULIC SYMBOLS

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50° C)

RM*-W PRESSURE CONTROL VALVES

> RM2-W SERIES 31 RM3-W SERIES 30

THREADED PORTS

- p max 350 bar
- **Q** max (see table of performances)

OPERATING PRINCIPLE

- The RM*-W valves are pressure control valves with threaded ports for panel mounting with a ring-nut fastening.
- They are available in two different sizes: RM2-W direct operated for flows up to 50 l/min; RM3-W pilot operated for flows up to 75 l/min.
- They are normally supplied with a countersunk hex adjustment screw, a locking nut and a maximum adjustment fastener.

		RM2-W	RM3-W	
Maximum operating pressure	bar	350		
Minimum controlled pressure	see diagram			
Maximum flow rate	l/min	50	75	
Ambient temperature range	°C	-20 / +50		
Fluid temperature range	°C	°C -20 / +80		
Fluid viscosity range	cSt 10 ÷ 400			
Fluid contamination degree	according to ISO 4406:1999 class 20/18/15			
Recommended viscosity	cSt 25			
Mass	kg	kg 0,9		

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

RQ*-W PRESSURE RELIEF VALVE SERIES 41

THREADED PORTS

p max 350 bar

Q max (see table of performances)

OPERATING PRINCIPLE

- The RQ*-W valves are pilot operated pressure relief valves with threaded ports, available in two nominal sizes for a flow rate up to 400 l/min.
- Main stage with shutter and cone seal.
- Possibility of remote piloting using port X (see par. 4).
- The valves allow the use of the entire flow of the pump even with pressure values near the set value. The wide passages allow reduced pressure drops and fluid heating due to low pressure drop across the valve.
- They are normally supplied with a hexagonal head adjustment screw. Upon request, they can be equipped with a SICBLOC adjustment knob.

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

		RQ5-W	RQ7-W
Maximum operating pressure	bar	350	
Maximum flow rate	l/min	250	400
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	According to ISO 4406:1999 class 20/18/		
Recommended viscosity	cSt 25		5
Mass	kg	4,1	8

HYDRAULIC SYMBOL

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111

Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

RQ*-W

SERIES 41

21 230/112 ED

RQM*-W SOLENOID OPERATED PRESSURE RELIEF VALVE WITH UNLOADING AND PRESSURE SELECTION

SERIES 60

THREADED PORTS

p max 350 bar

Q max (see table of performances)

OPERATING PRINCIPLE

- ", The RQM*-W valves are pilot operated pressure relief valves with BSP threaded ports, available in two nominal sizes for a flow rate up to 400 l/min.
- ", Available in five versions that allow, by means of a solenoid valve, unloading of the total flow and selection up to three pressure values (see table 2 for different versions).
- ", The adjustment of the second and third pressure value is obtained by a pressure relief valve placed between the main stage and the solenoid valve.
- ", They are normally supplied with a hexagonal head adjustment screw. Upon request, they can be equipped with a SICBLOC adjustment knob on the main pressure control.

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

		RQM5-W	RQM7-W
Maximum operating pressure	bar	350	
Maximum flow rate	l/min	250	400
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25	

NOTE: for the solenoid valve DS3 characteristics see catalogue 41 150

RQM*-W SERIES 60

1 - IDENTIFICATION CODE

2 - VERSIONS

3 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

RQM*-W SERIES 60

4 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

5 - OVERALL AND MOUNTING DIMENSIONS

6 - ADJUSTMENT KNOB

The RQ valves can be equipped with a SICBLOC adjustment knob, only on the main pressure regulation. To operate it, push and rotate at the same time.

To request this option, add: /M (see paragraph 1).

7 - ELECTRIC CONNECTORS

The solenoid operated valves are delivered without the connectors. They must be ordered separately. For the identification of the connector type to be ordered, please see catalogue 49 000.

8 - MANUAL OVERRIDE, BOOT PROTECTED: CM

Whenever the solenoid valve installation may involve exposure to atmospheric agents or utilization in tropical climates, use of the manual override, boot protected, is recommended. Add the suffix **CM** to request this device (see paragraph1).

For overall dimensions see catalogue 41 150.

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

RQ*-P PRESSURE RELIEF VALVES SERIES 41

SUBPLATE MOUNTING RQ3-P ISO 6264-06 (CETOP R06) RQ5-P ISO 6264-08 (CETOP R08) RQ7-P ISO 6264-10 (CETOP R10)

HYDRAULIC SYMBOL

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

OPERATING PRINCIPLE

- RP 121H) standards.
- Possibility of remote piloting using port X (see Hydraulic symbol table).
- The RQ*-P valves allow use of the entire flow of the pump even with pressure values near the set value.
- The wide passages allow reduced pressure drops, improving the energy efficiency of the plant.

		RQ3-P	RQ5-P	RQ7-P	
Maximum operating pressure	bar		350		
Maximum flow rate	l/min	200 400 50			
Ambient temperature range	°C	-20 / +50			
Fluid temperature range	°C	-20 / +80			
Fluid viscosity range	cSt	10 ÷ 400			
Fluid contamination degree		According to ISO 4406:1999 class 20/18/15			
Recommended viscosity	cSt	25			
Mass	kg	3,5	4,3	6,5	

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

4 - RQ3-P OVERALL AND MOUNTING DIMENSIONS

RQ*-P SERIES 41

5 - RQ5-P OVERALL AND MOUNTING DIMENSIONS

6 - RQ7-P OVERALL AND MOUNTING DIMENSIONS

7 - ADJUSTMENT KNOB

The RQ valves can be equipped with a SICBLOC adjustment knob. To operate it, push and rotate at the same time.

To request this option, add: /M (see paragraph 1).

8 - SUBPLATES (see catalogue 51 000)

	RQ3-P	RQ5-P	RQ7-P
Туре	PMRQ3-AI4G rear ports	PMRQ5-AI5G rear ports	PMRQ7-AI7G rear ports
P, T ports dimension	P: 1/2" BSP T: 3/4" BSP	1" BSP	1" 1/4 BSP
X port dimension	1/4" BSP	1/4" BSP	1/4" BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24

Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

21 310/112 ED

RQM*-P

SOLENOID OPERATED PRESSURE RELIEF VALVES WITH UNLOADING AND PRESSURE SELECTION

SERIES 60

SUBPLATE MOUNTING RQM3-P ISO 6264-06 (CETOP R06) RQM5-P ISO 6264-08 (CETOP R08) RQM7-P ISO 6264-10 (CETOP R10)

OPERATING PRINCIPLE

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

- ", The RQM*-P valves are pressure relief valves available in three nominal sizes for "ow up to 500 l/min.
- ", They are available in ISO 6264 (CETOP RP 121H) subplate mounting version.
- ", Available in "ve versions that allow, by means of a solenoid valve, unloading of the total "ow and selection up to three pressure values (see table 2 Versions).
- ", The adjustment of the second and third pressure values is obtained by a pressure relief valve placed between the main stage and the solenoid valve.
- ", It is supplied with an hexagonal head adjustment screw. Upon request, it can be equipped with a SICBLOC adjustment knob on the main pressure control.

	RQM3-P	RQM5-P	RQM7-P	
bar	350			
l/min	200 400 500		500	
°C	-20 / +50			
°C	-20 / +80			
cSt	10 ÷ 400			
	According to ISO 4406:1999 class 20/18/15			
cSt	25			
	bar I/min °C °C cSt cSt	RQM3-P bar I/min 200 °C °C cSt According to ISC cSt	RQM3-P RQM5-P bar 350 l/min 200 400 °C -20 / +50 °C -20 / +80 cSt 10 ÷ 400 According to ISO 4406:1999 class 20/18 cSt 25	

NOTE: for the solenoid valve DS3 characteristics see catalogue 41 150

RQM*-P SERIES 60

1 - IDENTIFICATION CODE

2 - VERSIONS

3 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

4 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

5 - OVERALL AND MOUNTING DIMENSIONS

6 - MOUNTING SURFACES

ø7 5 M18 ISO 6264-10-17-*-97 (CETOP 4.4.2-2-R10-350)

ø6.3

7 - ADJUSTMENT KNOB

The valves can be equipped with a SICBLOC adjustment knob, only on the main pressure regulation. To operate it, push and rotate at the same time.

To request this option, add: /M (see paragraph 1).

8 - ELECTRIC CONNECTORS

The solenoid valves are never supplied with connector. Connectors must be ordered separately. For the identification of the connector type to be ordered, please see catalogue 49 000.

9 - MANUAL OVERRIDE, BOOT PROTECTED: CM

Whenever the solenoid valve installation may involve exposure to atmospheric agents or utilization in tropical climates, use of the manual override boot protected is recommended.

Add the suffix CM to request this device (see paragraph 1). For overall dimensions see catalogue 41 150.

10 - FASTENING BOLTS AND SEALING RINGS

	RQM3-P	RQM5-P	RQM7-P
Fastening (4 SHC bolts ISO 4762)	M12 x 40	M16 x 50	M18 x 60
Torque	69 Nm	170 Nm	235 Nm
Sealing rings	N. 2 OR type 123 (17.86x2.62) 90 Shore N. 1 OR type 109 (9.13x2.62) 90 Shore	N. 2 OR type 3118 (29.82x2.62) 90 Shore N. 1 OR type 109 (9.13x2.62) 90 Shore	N. 2 OR type 4137 (34.52x3.53) 90 Shore N. 1 OR type 109 (9.13x2.62) 90 Shore

11 - SUBPLATES (see catalogue 51 000)

	RQM3-P	RQM5-P	RQR7-P
Туре	PMRQ3-AI4G rear ports	PMRQ5-AI5G rear ports	PMRQ7-AI7G rear ports
P, T, U ports dimension	P: 1/2Ž BSP T: 3/4Ž BSP	1Ž BSP	1Ž 1/4 BSP
X port dimension	1/4Ž BSP	1/4Ž BSP	1/4Ž BSP

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

ISO 6264-08-13-*-97 (CETOP 4.4.2-2-R08-350)

MRQA UNLOADING VALVE (FOR CIRCUITS WITH ACCUMULATOR) SERIES 42

SUBPLATE MOUNTING

ISO 4401-03 (CETOP 03)

- p max 350 bar
- Q max 40 l/min

OPERATING PRINCIPLE

— MRQA is a pressure relief and safety valve with automatic unloading. Upon reaching the set value, the valve freely unloads the pump and puts it under pressure again when the pressure values descend in the circuit to correspond to 68% or 78% of the set value.

In order to assure this operation, it is necessary to use an accumulator (see hydraulic diagram) that guarantees pressure maintenance in the circuit. A check valve, incorporated in the panel or available as a plate under the valve MRQA/C, prevents the accumulator unloading through the open valve.

This system maintains the pressure in the hydraulic circuit, avoiding heating of the oil and reducing energy consumption.

It is recommended to place the accumulator as close as possible to the MRQA, without reducing the connection size.

 The cycle time depends on the pump flow rate, the accumulator capacity and pre-charge, and the flow requirement of the system.

PERFORMANCE RATINGS (measured with mineral oil of viscosity 36 cSt at 50°C)

Maximum operating pressure	bar	350
Maximum flow rate	l/min	40
Ambient temperature range °C		-20 / +50
Fluid temperature range	°C -20 / +80	
Fluid viscosity range	cSt 10 ÷ 400	
Fluid contamination degree	According to ISO 4406:1999 class 21/19/16	
Recommended viscosity	cSt	25
Mass: MRQA MRQA*/C	kg	3,3 4,2

MOUNTING INTERFACE

HYDRAULIC SYMBOLS & DIAGRAM

21 400/112 ED

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

HYDRAULIC SYMBOLS

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

RQ**-P UNLOADING VALVE (FOR CIRCUITS WITH ACCUMULATOR) SERIES 42

FOR REMOTE PILOTING

RQA*-P

SUBPLATE MOUNTING

OPERATING PRINCIPLE

 The RQR*-P and RQR*-A valves have not only the normal function of relief valves or safety valves but also the characteristic of freely discharging the pump flow when the set pressure value is reached.

In order to assure this condition, the use of an accumulator that guarantees pressure in the circuit is required. The use of a check valve prevents the accumulator from discharging through the valve in the open position.

 Those valves are made with a balanced shutter main stage that has wide passages for big flows and reduced pressure drops.

		RQR3-P	RQR5-P	RQR7-P	RQA5-P	RQA7-P
Maximum operating pressure	bar	350				
Maximum flow rate	l/min	200	400	500	400	500
Ambient temperature range	°C	-20 / +50				
Fluid temperature range	°C	-20 / +80				
Fluid viscosity range	cSt	10 ÷ 400				
Fluid contamination degree		According to ISO 4406:1999 class 20/18/15				
Recommended viscosity	cSt	25				
Mass	Kg	3,5	4,3	6,5	10	17

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

RQ**-P SERIES 42

4 - RQR3-P OVERALL AND MOUNTING DIMENSIONS

5 - RQR5-P and RQR7-P OVERALL AND MOUNTING DIMENSIONS

21 410/113 ED

RQ**-P SERIES 42

6 - RQA5-P and RQA7P OVERALL AND MOUNTING DIMENSIONS

7 - ADJUSTMENT KNOB

The valves can be equipped with a SICBLOC adjustment knob. To operate it, push and rotate at the same time.

To request this option, add: /M (see paragraph1).

8 - SUBPLATES (see catalogue 51 000)

	RQR3-P	RQR5-P	RQR7-P	RQA5-P	RQA7-P
Туре	PMRQ3-AI4G rear ports	PMRQ5-AI5G rear ports	PMRQ7-AI7G rear ports	PMRQA5-AI5G rear ports	PMRQA7-AI7G rear ports
P, T, U ports dimensions	P: 1/2" BSP T: 3/4" BSP	1" BSP	1" 1/4 BSP	3/4" BSP	1" 1/4 BSP
X port dimension	1/4" BSP	1/4" BSP	1/4" BSP	-	-

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

HYDRAULIC SYMBOLS

RQ*M*-P

UNLOADING VALVE WITH AUTOMATIC OR SOLENOID OPERATED VENTING (FOR CIRCUITS WITH ACCUMULATOR) **SERIES 51 RQRM*-P** FOR REMOTE PILOTING

RQAM*-P WITH INCORPORATED CHECK VALVE

SUBPLATE MOUNTING

OPERATING PRINCIPLE

- The RQ*M*-P valves have not only the normal function of relief valves or safety valves but also the characteristic of freely discharging the pump flow either when the set pressure value is reached, or when the solenoid valve is de-energized. In order to assure this condition, the use of an accumulator that guarantees pressure in the circuit is required. The use of a check valve prevents the accumulator from discharging through the valve in the open position.

They are made with a balanced shutter main stage that has wide passages for large flows, with reduced pressure drops.

		RQRM3-P	RQRM5-P	RQRM7-P	RQAM5-P	RQAM7-P
Maximum operating pressure	bar	350				
Maximum flow rate	l/min	200 400 500		400	500	
Ambient temperature range	°C	-20 / +50				
Fluid temperature range	°C	-20 / +80				
Fluid viscosity range	cSt	10 ÷ 400				
Fluid contamination degree		According to ISO 4406:1999 class 20/18/15				
Recommended viscosity	cSt	25				
Mass	Kg	5	5,8	8	12	19

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

NOTE: for the solenoid valve DS3 characteristics see catalogue 41 150

1 - IDENTIFICATION CODE

NOTE: The locking rings of the coils and the relevant O-Rings are supplied together with valves

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

MINIMUM CONTROLLED PRESSURE

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

RQ*M*-P SERIES 51

4 - RQRM3-P OVERALL AND MOUNTING DIMENSIONS

5 - RQRM5-P and RQRM7-P OVERALL AND MOUNTING DIMENSIONS

RQ*M*-P SERIES 51

6 - RQAM5-P and RQAM7-P OVERALL AND MOUNTING DIMENSIONS

7 - ADJUSTMENT KNOB

The RQ*M*-P valves can be equipped with a SICBLOC adjustment knob. To operate it, push and rotate at the same time. To request this option, add: /M (see paragraph 1).

8 - ELECTRIC CONNECTORS

The solenoid valves are never supplied with connector.Connectors must be ordered separately. For the identification of the connector type to be ordered, please see catalogue 49 000.

9 - MANUAL OVERRIDE, BOOT PROTECTED: CM

Whenever the solenoid valve installation may involve exposure to atmospheric agents or utilization in tropical climates, use of the manual override, boot protected is recommended. Add the suffix **CM** to request this device (see paragraph 1). For overall dimensions see catalogue 41 150.

10 - SUBPLATES (see catalogue 51 000)

	RQRM3-P	RQRM3-P RQRM5-P RQRM7-F		RQAM5-P	RQAM7-P
Туре	PMRQ3-AI4G rear ports	PMRQ5-AI5G rear ports	PMRQ7-AI7G rear ports	PMRQA5-AI5G rear ports	PMRQA7-AI7G rear ports
P T U port dimensions	1/2" BSP	1" BSP	1" 1/4 BSP	3/4" BSP	1" 1/4 BSP
X port dimensions	1/4" BSP	1/4" BSP	1/4" BSP	_	_

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

21 420/113 ED

\$%')#%'#%!

% ' \$'" # (?73EGD76 I;F: ?;@7D3> A;> A8 H;E5AE;FK 5*F 3F M

		'&" %	'&" %	'&" %
\$3J;?G? AB7D3F;@9 BD7EEGD7	43D			
\$3J;?G? 8>AI D3F7	> ?;@			
?4;7@F F7?B7D3FGD7 D3@97	М	%	5)3@6'\$%	6#
>G;6 F7?B7D3FGD7 D3@97	М	%	5)3@6'\$%	6#
>G;6 H;E5AE;FK D3@97	5*F		Z	
>G;6 5A@F3?;@3F;A@ 679D77		55AD6;@9 FA	*& 5>3EE	
)75A??7@676 H;E5AE;FK	5*F			

#))\$#\$

RQM*KD2-P

.'*! !* (

,E7 ?;@7D3> A;> 43E76 :K6D3G>;5 8>G;6E # AD \$ FKB7 355AD6;@9 FA *& AD F:7E7 8>G;6E GE7 %) E73>E 5A67 % AD 8>G;6E) FKB7 B:AEB:3F7 7EF7DE GE7 '\$ E73>E 5A67 - AD F:7 GE7 A8 AF:7D =;@6E A8 8>G;6 EG5: 3E B>73E7 5A@EG>F AGD F75:@;53> 67B3DF?7@F

,E;@9 8>G;6E 3F F7?B7D3FGD7E :;9:7D F:3@ M 53GE7E 3 83EF7D 679D363F;A@ A8 F:7 8>G;6 3@6 A8 F:7 E73>E 5:3D35F7D;EF;5E +:7 8 BD7E7DH76 ;@ ;FE B:KE;53> 3@6 5:7?;53> 5:3D35F7D;EF;5E

')'() *'+(H3>G7E A4F3;@76 I;F: H;E5AE;FK A8 5*F 3F M

!,*+\$ %+

\$ % \$,\$ &%+)&## ') **,)

RQM*KD2-P

) - ! (() \$# \$% ') #) "% ')*' (# !)' ! ')'() (

AD H3>H7E EG;F34>7 8AD 3BB>;53F;A@ 3@6 ;@EF3>>3F;A@ ;@ BAF7@F;3>>K 7JB>AE;H7 3F?AEB:7D7E 355AD6;@9 FA + / 6;D75F;H7 BD7E5E 57DF;8;53F7E F:7 5A?4;@3F;A@ H3>B855AC??;G 1;E1GA 9=3;C45A B85 453;1@1B9>= >6 3>=6>@<9BG B> B85 49@53B9D5 1=4 B85 >?5@1B9= <19=B5=1=35 <1=C1; B81B 3>=B19=A 1;; B85 9=6>@<1B9>= =55454 6>@ 1 3>@@53B CA5 >6 B85 D1;D5 9= ?>B5=B91;;G 5F?;>A9D5 5=D9@>= A;>E 3EE7?4>76 A@ F:7E7 H3>H7E :3H7 477@ E7B3D3F7>K 57DF;8;76 355AD6;@9 FA + / 6;D75F;H7 3@6 EA F:7K 3D7 EG;F34>7 8AD GE7 ;@ 7JB>AE;H7 3F?AEB:7D7E

+1;D5) - 3;1AA96931B9>=

+:7 H3>H7E 53@ 47 GE76 8AD 3BB>;53F;A@E 3@6 ;@EF3>>3F;A@E ;@ BAF7@F;3>>K 7JB>AE;H7 3F?AEB:7D7E F:3F 83>> I;F:;@ 7;F:7D F:7 + / 5>3EE;8;53F;A@ I;F: F:7 8A>>AI ?3D=;@9

\$)" % ^ &)^ * * - '&,)* \$ *+*	\$)" % ^ &) ,*+*
8AD % 3@6 - E73>E	8AD % 3@6 - E73>E
(ک) 2 I)1 I	(£x)) 2 % %)1
8AD %# E73>E	8AD %# E73>E
(Ex)) 2 N I)1 I	(€x)) 2 % %)1
/ *B75;8;5 ?3D=;@9 A8 7JB>AE;A@ BDAF75F;A@ 3E + / 6;D75F;H7 3@6 D7>3F76 F75:@;53> EB75;8;53F;A@ D7CG7EF	/ *B75;8;5 ?3D=;@9 A8 7JB>AE;A@ BDAF75F;A@ 3E +/ E 6;D75F;H7 3@6 D7>3F76 F75:@;53> EB75;8;53F;A@ D7CG7EFE
DAGB 8AD EGD8357 B>3@FE	DAGB 8AD EGD8357 B>3@FE
3F79ADK :;9: BDAF75F;A@ 7>;9;4>7 8AD LA@7 F:7D78AD7 3>EA 7>;9;4>7 8AD 53F79ADK LA@7 +KB7 A8 3F?AEB:7D7 I;F: 93E7E H3BAGDE ?;EFE 3E 9DAGB F:7D78AD7 3>EA 7>;9;4>7 8AD 9DAGB 3@6	3F79ADK ::9: BDAF75F;A@ 7>;9;4>7 8AD LA@7 F:7D78AD7 3>EA 7>;9;4>7 8AD 53F79ADK LA@7 +KB7 A8 3F?AEB:7D7 I;F: 6GEFE GEFE 9DAGB F:7D78AD7 3>EA 7>;9;4>7 8AD 9DAGB 3@6
+ +7?B7D3FGD7 5>3EE ?3J EGD8357 F7?B7D3FGD7	+ M +7?B7D3FGD7 5>3EE ?3J EGD8357 F7?B7D3FGD7
4 '# BDAF75F;A@ >7H7> 8AD 7>75FD;53> 67H;57E	4
M +3 M ?4;7@F F7?B7D3FGD7 D3@97 8AD H3>H7E I;F: 4AF: 3@6 - E73>E	%' ' 'DAF75F;A@ 679D77 8DA? 3F?AEB:7D;5 397@FE 355AD6;@9 FA %
_ M +3 M ?4;7@F F7?B7D3FGD7 D3@97 8AD H3>H7E I;F: %#	M +3 M ?4;7@F F7?B7D3FGD7 D3@97 8AD H3>H7E I;F: 4AF: %

F73>F

>9;A)-3;1AA96931B9>=

+:7 5A;> A8 F:7 7JB>AE;A@ BDAA8 H3>H7E ;E ;67@F;8;76 I;F: ;FE AI@ F39 I:;5: 53DD;7E F:7 D7>3F;H**)**85 **≮5380⊨909; 3>=AB@C3B9>= >6** B85 3>9; 8>CA9=7 9A <145 9= >@45@ B> 5=AC@5 9BA @5A9AB1=35 B> ?>AA92;5 9=B5@=1; 5F?;>A9>= 1=4 B> 1D>94 1=G 5F?;>A9>= ?@>? B85 >CBA945 5=D9@>=<5=B <1B389=7 1= K F 4L BG?5 ?@>B53B9>= 5F?;>A9>= ?@>>6 3>9;

3@6 - E73>E

\$AD7AH7D F:7 EA>7@A;6 ;E 67E;9@76 FA ?3;@F3;@ ;FE EGD8357 F7?B7D3FGD7 47>AI F:7 >;?;FE EB75;8;76 FA F:7 D7>7H3 +:7) 5A;>E 8AD 3>F7D@3F;@9 5GDD7@F EGBB>K 5A@F3;@ 3 4G;>F ;@ D75F;8;7D 4D;697

7D7 47>AI KAG 8;@6 F:7 5A;>E ?3D=;@9

\$)" % ^ &)^ * * - '&,)* \$ *+*

(Ex) F4) 2 N I)1 I

/ *B75;8;5 ?3D=;@9 A8 7JB>AE;A@ BDAF75F;A@ 3E + / / / 6;D75F;H7 3@6 D7>3F76 F75:@;53> EB75;8;53F;A@ D7CG7EFE

DAGB 8AD EGD8357 B>3@FE

3F79ADK :;9: BDAF75F;A@ 7>;9;4>7 8AD LA@7 F:7D78AD7 3>EA 7>;9;4>7 8AD 53F79ADK LA@7 +KB7 A8 3F?AEB:7D7 I;F: 93E7E H3BAGDE ?;EFE

- J 6 V6W BDAF75F;A@ FKB7 7JB>AE;A@ BDAA8 53E7 3E 9DAGB
- F:7D78AD7 3>EA 7>;9;4>7 8AD 9DAGB 3@6
- + +7?B7D3FGD7 5>3EE ?3J EGD8357 F7?B7D3FGD7
- 4 '# BDAF75F;A@ >7H7> 8AD 7>75FD;53> 67H;57E
- _ M +3 M ?4;7@F F7?B7D3FGD7 D3@97

\$?5@1B9=7 B5<?5@1BC@5A

+:7 AB7D3F;@9 3?4;7@F F7?B7D3FGD7 ?GEF 47 47FI77@ E73>E +:7 8>G;6 F7?B7D3FGD7 ?GEF 47 47FI77@ M +:7 H3>H7E 3D7 5>3EE;8;76 ;@ + F7?B7D3FGD7 5>3EE + + 8AD 93E 3@6 + M 8AD 6GEF

\$)"%^&),*+*

(Ex)

JI

+

4

FB2) I 2 % % N I)1 I

*B75;8;5 ?3D=;@9 A8 7JB>AE;A@ BDAF75F;A@ 3E + / 6;D75F;H7 3@6 D7>3F76 F75:@;53> EB75;8;53F;A@ D7CG7EFE
DAGB 8AD EGD8357 B>3@FE
3F79ADK :;9: BDAF75F;A@_7>;9;4>7 8AD LA@7 F:7D78AD7 3>EA 7>;9;4>7 8AD 53F79ADK LA@7
+KB7 A8 3F?AEB:7D7 I;F: 6GEFE
F4 XF4Y BDAF75F;A@ FKB7
GEFE 9DAGB
F:7D78AD7 3>EA 7>;9;4>7 8AD 9DAGB 3@6
M +7?B7D3FGD7 5>3EE ?3J EGD8357 F7?B7D3FGD7
'# BDAF75F;A@ >7H7> 8AD 7>75FD;53> 67H;57E

_ M +3 M ?4;7@F F7?B7D3FGD7 D3@97 8AD H3>H7E I;F: %# E73>E

- ' 'DAF75F;A@ 679D77 8DA? 3F?AEB:7D;5 397@FE 355AD6;@9 FA %
- _ M +3 M ?4;7@F F7?B7D3FGD7 D3@97

 Y@
 M
 8AD H3>H7E I;F: 4AF: % 3@6 - E73>E 3@6
 M
 8AD H3>H7E I;F: %#

 M
 8AD H3>H7E I;F: 4AF: % 3@6 - E73>E 3@6
 M
 8AD H3>H7E I;F: %# E73>E

+:7 H3>H7E 3D7 5>3EE;8;76 ;@ + F7?B7D3FGD7 5>3EE + M F:7D78AD7 F:7K 3D7 7>;9;4>7 8AD AB7D3F;A@ 3>EA 3F :;9:7D 5>3EE F7?B7D3FG

) \$?B9>= +5@A9>= 6>@) B5<?5@1BC@53;1AA

+:7 H3>H7E 5>3EE;8;76 8AD + F7?B7D3FGD7 5>3EE 3D7 EG;F34>7 8AD AB7D3F;A@ ;@ BAF7@F;3>>K 7JB>AE;H7 3F?AEB:7D7E I;F: 3?4;7 47FI77@ M 8AD 4AF: H3>H7E I;F: % 3@6 - E73>E 3@6 M M 8AD H3>H7E I;F: %# E73>E

+:7 8>G;6 F7?B7D3FGD7 ?GEF 47 47FI77 @ M 8AD 4AF: H3>H7E I;R % 23 @ E 3 @ 6 M 8AD H3>H7E I;F: % # E73>E +:7 H3>H7E 3D7 5>3EE;8;76 ; @ + FD73BGD7 5>3EE + M F:7D78AD7 F:77 K-39;4>7 8AD AB7D3F;A @ F3>@ F3>E F7?B7D3FGD7 + +

+:/H3>H/E3D/5>3EE;8//6;@+H03B6D/5>3EE + M F:/D/8AD/F://K3/B/4>/8AD AB/D3F;A/GB-33#EAD 5>3EE F//B/D3FGD/ + + 8AD 93E 3@6 + M 8AD 6GEFE

+:7 ?3D=;@9 8AD + 5>3EE F7?B7D3FGD7 H7DE;A@E 3D7

- #- * \$)" % ^ &)^ * * - '&,)* \$ *+* 8AD % 3@6 - E73>E (Ex)) 2 |)1 | 8AD %# E73>E

(€x)) 2 N I)1 I

& # \$)" % ^ &)^ * * - '&,)* \$ *+*

🔄 F4)2NI)1I

;53B@931; 381@13B5@9AB93A D1;C5A J

A;> FKB7	%A?;@3> HA>F397 1-2)7E;EF3@57 3F M 1T2	GDD7@F 5A@EG?BF 1 2	'AI7D 5A@EG?BF 1.2

A;> FKB7 #\$)	%A?;@3> HA>F397 1-2	D7C 1 L2)7E;EF3@5 3F M 1T2	GDD7@I 5A@EG?B 1 2	'AI7D 5A@EG?BF 1- 2
•	- L - L				
	- L - L				

- #- * \$)" % ^ &)	,*	+*			
8AD % 3@6 - E7	73:	>E			
(Ex))	I	2 %	%	
8AD %# F73>F					

€) | 2 % % N |)1 |

& # \$)" % ^ &) ,*+*

🔄 FB2) I 2 % % N I)1 I

I)1 I

RQM*KD2-P

+\$!) (*%%!. !*)*) \$# @9??;5 9=3;C454	R -@A?
" - (,) \$# '&* #.	;@E :AGD
*).M . !	
-%!\$(\$# %'\$\$ + '(\$#	55AD6;@9 FA + /
!)'\$" #) \$"%) !). "	55AD6;@9 FA
! ((\$%'\$))\$# F?AEB:7D;5 397@FE A;> ;@EG>3F;A@ -	5>3EE

#\$) FKB7) 5A;>E 3D7 8AD 3>F7D@3F;@9 5GDD7@F EGBB>K 8AD 4AF: AD L AD) 5A;>E F:7 D7E;EF3@57 53@ @AF 47 ?73EGD76 ;@ F:7 GEG3> I3K 4753GE7 A8 F:7 BD7E7@57 A8 6;A67E 4D;697 ;@E;67 F:7 5A;>

!)'!\$##)\$#

,9@9=7

@ AD67D FA D73>;E7 F:7 7>75FD;53> 5A@@75F;A@ A8 F:7 5A;> ;F ;E @757EE3DK FA 3557EE F:7 F7D?;@3> 4>A5= G@E5D7I;@9 F:7 E5D F:7 5AH7D I;F: F:7 4AJ F:3F 5A@F3;@E F:7 F7D?;@3> 4>A5=

)85 5;53B@931; 3>==53B9>= 9A ?>;1@9BG 9=45?5=45=B

K 6A;@9 7>75FD;53> 5A@@75F;A@ ;F ;E ;?BADF3@F FA 5A@@75F 3>EA F:7 9DAG@6;@9 BA;@F ;@ F:7 F7D?;@3> 4>A5= 4AJ \$ E5D7IE 5A@6G5FADE I;F: F:7 97@7D3> 9DAG@6;@9 >;@7 A8 F:7 EKEF7?

&@ F:7 7JF7D@3> 4A6K A8 F:7 5A;> F:7D7 ;E 3 9DAG@6;@9 BA;@F \$ E5D7I F:3F 3>>AI FA 7@EGD7 7CG;BAF7@F;3>;FK 47FI77@ F:7 97@7D3> 9DAG@6;@9 >;@7 A8 F:7 EKEF7? 5A@@75F;@9 F:;E BA;@F F:7 D79G>3F;A@ A8 F:7 % EF3@63D6 F:3F ;?BAE7 FA H7D;8K F:7 A8 F:7 7>7??@FE ;@5>G676 ;@ 3 BAF7@F;3>>K 7JB>AE;H7 7@H;DA@??@F F:7 ?3J;?G? D7E;EF3@57 47FI77@ F:7 7>7??@FE ?GEF 9G3D3@F776

F F:7 7@6 A8 F:7 7>75FD;53> I;D;@9 ;F ;E @757EE3DK FA D73EE7?4>7 F:7 5AH7D A@ F:7 4AJ 5:75=;@9 F:7 5ADD75F BAE;F;A@;@9 A8 F:7

;@ F:7 5AH7D E73F 3@6 83EF7@;@9 F:7 \$ E5D7IE I;F: 3 FADCG7 A8 Z %? >75FD;53> I;D;@9 ?GEF 47 6A@7 8A>>AI;@9 F:7 ;@EFDG5F;A@E / ;@ 5A?B>;3@57 I;F: + /^EF3@63D6E

:3D35F7D;EF;5E A8 F:7 534>7E 5A@@75F34>7 8AD I;D;@9 3D7 ;@6;53F76 ;@ F:7 F34>7 47>AI

C=3B9>=	12;5 A53B9>=
&B7D3F@9 HA>F397 534>7E 5A@@75F;A@	?3J ??]
A@@75F;A@ 8AD ;@F7D@3> 9DAG@6;@9 BA;	?3J ??]
A@@75F;A@ 8AD 7JF7D@3> 7CG;BAF7@F;3> 9DAG@	?3J ??]

34>7E 8AD I;D;@9 ?GEF 47 @A@ 3D?AGD76 534>7E I;F: 7JF7D@3> 5AH7D;@9 E:73F: 3@6 ?GEF 47 EG;F34>7 8AD GE7 ;@ 7@H;DA@?7@FE I;F: 8DA? M FA M 8AD H3>H7E 7;F:7D I;F: % AD - E73>E AD 8DA? M FA M 8AD H3>H7E I;F: %# E73>E

34>7 9>3@6E 1:;5: ?GEF 47 AD67D76 E7B3D3F7>K E77 B3D39D3B: 3>>AI FA GE7 534>7E 1;F: 7JF7D@3> 6;3?7F7D 47F177@ 3@6 ??

;53B@931; 4917@1<A

\$D5@3C@@5=B 6CA5 1=4 AE9B38 >66 D>;B175 ?51:

,BEFD73? A8 735: H3>H7 3@ 3BBDABD;3F7 8GE7 ?3J J @ 355AD6;@9 FA AD 3 BDAF75F;H7 ?AFAD EI;F5: I;F: E:ADF 5;D5G;F 3@6 F:7E ;@EF3@F3@7AGE FD;BB;@9 3E E:ADF 5;D5G;F BDAF75F;A@ ?GEF 47 5A@@75F76 +:7 5GF A88 BAI7D A8 F:7 8GE7 ?GEF 5ADD7EBA@6 AD 7J5 5GDD7@F A8 F:7 EGBB>K EAGD57 +:7 8GE7 AD F:7 BDAF75F;H7 ?AFAD ?GEF 47 B>3576 AGFE;67 F:7 63@97DAGE 3D73 AD F:7K ?GEF 47 BD/7JB>AE;A@ BDAA8 5AH7D;@9

@ AD67D FA E3879G3D6 F:7 7>75FDA@;5 67H;57 FA I:;5: F:7 H3>H7 ;E 5A@@75F76 F:7D7 ;E 3 BDAF75F;A@ 5;D5G;F ;@ F:7 5A;> F:3F D76G57E I:;5: 53@ A55GD I:7@ ;@6G5F3@57E 3D7 EI;F5:76 A88

+:7 F34>7 E:AIE F:7 FKB7 A8 8GE7 D75A??7@676 355AD6;@9 FA F:7 @A?;@3> HA>F397 A8 F:7 H3>H7 3@6 FA F:7 H3>G7 A8 F:7 HA>F397 B73=E

A;> FKB7	%A?;@3> HA>F397 1-2)3F76 5GDD70 1 2	'53><<5=454 ?@5 6CA5 381@13B5@9AB93 <549C< B9<5 ;17 133>@49=7 B> # / 0	\$3J;?G? HA>F397 H3>G7 GBA@ EI;F5: 1-2	*GBBD7EEAD 5;D5G;F
					+D3@E;7@F HA>F39 EGBBD7EEAD
•					4;6;D75F;A@3>
•					

^*:AD7

^*:AD7

J

.1

&) FKB7

RQM*KD2-P ('(

'&" % \$+ ' !! # "\$*#) # " #(\$#(

	\$AG@F;@9 EGD8357		\$3@G3> AH7DD;67 4AAF
	7J39A@3> :736 36 <gef?7@f E5D7I 8AD ?3;@ BD7EEGD7 H3>G7 EB3@@7D >A5=I;E7 DAF3F;A@ FA ;@5D</gef?7@f 	73	# 1=4 + A51;A AD 4>;@6 D;@9 @GF 6;?7@E;A@ EF3@63D6 8AD %# E73>E E77 B3D
	*75A@6 BD7EEGD7 H3>G7		+7D?;@3> 8AD EGBB>7?7@F3DK 73DF: 5A@@75F;A@
	36 <gef?7@f< td=""><td></td><td>,BB7D BADF 8AD 534>7 9>3@6</td></gef?7@f<>		,BB7D BADF 8AD 534>7 9>3@6
	A3=7F 773 38 <gef 77="" @f<br="">E5D7I >>7@ =7K >A5=I;E7 DAF3F;A@ FA ;@5D73E7 BD7EEGD7</gef>		34>7 9>3@6 GBB7D BADF E:AI@ +A 47 AD67D76 E7B3D3F7>K
	D7EEGD7 93G97 BADF W *		E77 B3D39D3B:
	*& +&' EA>7@A;6 H3>H7 8AD BD7EE E7>75F;A@ G@>A36;@9 I;F: 7JB>AE;A@ BDAA8 5A;>E	GD7	#\$) 8AD E;67 BADF 534>7 9>3@6 E77 B3D39D3B:
	A;> D7?AH3> EB357		

'&" %
-3>H7 83EF7@;@9 % * E5D7IE \$ J *&
+;9:F7@;@9 FADCG7 %?
+:D736E A8 ?AG@F;@9 :A>7E \$ J
73>;@9 D;@9E % &) FKB7 J ^:AD7 % &) FKB7 J ^*:AD7

'&" %

RQM*KD2-P

D

&) FKB7

J

^*:AD7

RQM*KD2-P

RQM*KD2-P

'&" % **\$##) \$# \$+ ' !! # "\$*#) # " #(\$#(** ((6;?7@E;A@E ;@ ?? 63.2 163 12 (11) Đ CC 14 '&" % (\odot ;?7@E;A@)(\$ " ')(\$ " ')(\$ " ' *;67 BADF Ó)(\$ " ')(\$ " ' ਵੀ∏ ∄∄∄ FKB7 Þ ((94.2 132 (11) (12) ¢ € ⊡ '&" % (;?7@E;A@ *;67 BADF)(\$ " ')(\$ " ')(\$ " ')(\$ " ')(\$ " ' • Ĩ₽₽ FKB7 П \odot ((134.5 91.6 -(11) (12) φ % '&" (Ш ;?7@E;A@)(\$ " ')(\$ " ')(\$ " ' *;67 BADF)(\$ " ')(\$ " ' ਵ∏ਿੱ FKB7 Ó Ц ((*;67 BADF 34>7 9>3@6 E;67 BADF E:AI@ +A 47 AD67D76 E7B3D3F7>K E77 B3D

" #* ! \$+ "

;9=4 @9=7 =CB

+:7 ?7F3> D;@9 @GF BDAF75FE F:7 EA>7@A;6 FG47 8DA? 3F?AEB:7D;5 397@FE 3@6 ;EA>3F7E F:7 ?3@G3> AH7DD;67 8DA? 355;67@F3> AB7D3F;A@E +:7 D;@9 @GF ;E F;9:F7@76 A@ 3 F:D73676 83EF7@7D F:3F =77BE F:7 5A;> ;@ ;FE BAE;F;A@ 7H7@ I;F:AGF F:7 D;@9 @GF

+A 3557EE F:7 ?3@G3> AH7DD;67 >AAE7 F:7 D;@9 @GF 3@6 D7?AH7 ;F F:7@ D73EE7?4>7 :3@6 F;9:F7@;@9 G@F;> ;F EFABE

3B9D1B5 B85 <1=C1; >D5@@945 1;E1GA 1=4 >=;G E9B8 =>= A?1@:9=7 B>>;A AC9B12;5 6>@ CA5 9=) - 1@51A 3;1AA96954

\$AD7 ;@8AD?3F;A@ A@ E387 GE7 A8 + / 5>3EE;8;76 5A?BA@7@FE 3D7 BDAH;676 ;@ F:7 ;@EFDG5F;A@ ?3@G3> 3>I3KE EGBB>;76 I;F: F:7 H3>H7

! !#(

34>7 9>3@6E ?GEF 47 AD67D76 E7B3D3F7>K GB>A?3F;5 A887DE EA?7 FKB7E A8 534>7 9>3@6E I;F: F:7 8A>>AI;@9 873FGD7E

N H7DE;A@ 8AD @A@ 3D?AGD76 534>7 7JF7D@3> E73> A@ F:7 534>7 EG;F34>7 8AD Q Z N 355AD6;@9 FA + / 6;D75F;H7 57DF;8;76 N 534>7 9>3@6 ?3F7D;3> @;5=7> 4D3EE N DG447D F;B ?3F7D;3> E;>;5A@7 N 3?4;7@F F7?B7D3FGD7 D3@97 S Z S N BDAF75F;A@ 679D77 ' '

+A AD67D >;EF F:7 67E5D;BF;A@ 3@6 F:7 5A67 A8 F:7 H7DE;A@ 5:AE7@ 8DA? 3?A@9 F:AE7

5A3@9?B9>= 5A3@9?B9>= # # >45 >45 -7DE;A@ I;F: \$ J *& ?3>7 F:D736 EG;F34>7 8AD 5A;>E I;F: -7DE;A@ I;F: W %'+ %* 7J %* EG;F34>7 8AD + 3@6 * 5A@@75F;A@ FKB7E ;F ;E EGBB>;76 7CG;BB76 I;F: E;>;5**&**®;≯E I;F: + 5A@@75F;A@ FKB7 ;@ AD67D FA 7@EGD7 ' E73> F:3F ?GEF 47 3EE7?4>76 47FI77@ F:7 534>7 9>3@6 3@6 F:7 5BDAF75F;A@ 679D77 +:7 5GEFA?7D ?GEF 3BB>K #& + + O P 5AH7D EA 3E FA 7@EGD7 ' ' BDAF75F;A@ 679D77 F:D736>A5=7D AD E;?;>3D 47FI77@ F:7 534>7 9>3@6 5A@@75F;A@ F:D 3@6 F:7 5A;> 5AH7D

5A3@9?B9>=

>45

-7DE;A@ I;F: = ,% % ?3>7 F:D736 EG;F34>7 8AD 5A;>E -7DE;A@ I;F: \$ J *& ?3>7 F:D736 EG;F34>7 8AD 5A;>E I;F: I;F: + 5A@@75F;A@ FKB7 ;@ AD67D FA 7@EGD7 ' ' BDAF75F;A@A@@75F;A@ FKB7 ;F ;E EGBB>;76 7CG;BB76 I;F: E;>;5A@7 E73> F:3 679D77 +:7 5GEFA?7D ?GEF 3BB>K #& + + O P F:D736>A5=7D AD ?GEF 47 3EE7?4>76 47FI77@ F:7 534>7 9>3@6 3@6 F:7 5A;> 5AH7D EA E;?;>3D 47FI77@ F:7 534>7 9>3@6 5A@@75F;A@ F:D736 3@6 F:**3E5A**A7@EGD7 ' ' BDAF75F;A@ 679D77 5AH7D

>45

5A3@9?B9>=

#

*()" #) #\$

+:7 H3>H7E 53@ 47 7CG;BB76 I;F: 3 * #& 36<GEF?7@F =@A4 A@>K A@ F:7 ?3;@ BD7EEGD7 D79G>3F;A@ +A AB7D3F7 BGE: 3@6 DAF3F7 3F F:7 E3?7 F;?7

+A D7CG7EF F:;E ABF;A@ 366 " E77 B3D39D3B:

#() !!) \$#

+:7 H3>H7E 53@ 47 ;@EF3>>76 ;@ 3@K BAE;F;A@ I;F:AGF ;?B3;D;@9 5ADD75F AB7D3F;A@ -3>H7 83EF7@;@9 F3=7E B>357 4K ?73@E A8 E5D7IE AD F;7 DA6E >3K;@9 F:7 H3>H7 A@ 3 >3BB76 H3>G7E A8 B>3@3D;FK 3@6 E?AAF:@7EE F:3F 3D7 7CG3> FA AD 47FF7D F:3@ F:AE7 ;@6;53F76 ;@ 8 F:7 ?;@;?G? H3>G7E A8 B>3@3D;FK AD E?AAF:@7EE 3D7 @AF ?7F 8>G;6 >73=397E 47FI77@ ?AG@F;@9 EGD8357 53@ 73E;>K A55GD

*GD8357 8;@;E:;@9
0.01/100
0.8

"\$*#) # (*' (

'&" %

)

(* %!) (E77 53F3>A9G7

	'&" %	'&" %	'&' %
+KB7	'\$)(D73D BADFE	'\$)(D73D BADFE	'\$)(D73D BADFE
' + BADFE 6;?7@E;A@	' W *' + W *'	W *'	W *'
/ BADF 6;?7@E;A@	W *'	W *'	W *'

#\$) *G4B>3F7E FA 47 AD67D76 E7B3D3F7>K 6A @AF 5A@F3;@ @7;F:7D 3>G?;@;G? @AD ?39@7E;G? 3F 3 :;9:7D D3F7 F:3@ F:7 H3>G7 3>>AI76 355AD6;@9 FA + / 6;D75F;H7 8AD 53F79ADK

+:7 GE7D ?GEF F3=7 53D7 3@6 ?3=7 3 5A?B>7F7 3EE7EE?7@F A8 F:7 ;9@;F;A@ D;E= F:3F 53@ A55GD 8DA? F:7 D7>3F;H7 GE7 ;@ BAF7@F 7@H;DA@?7@FE

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

Z*-P PRESSURE REDUCING VALVES SERIES 22

SUBPLATE MOUNTING

Z3-P ISO 5781-06 (CETOP 06) **Z5-P ISO 5781-08** (CETOP 08)

OPERATING PRINCIPLE

", The Z*-P type valves are used when a branch with a lower pressure than the main one is desired in the hydraulic circuits.

Being normally open, they allow passage of oil up to the point when the outlet pressure is less than that set on the valve; the valve closes and keeps the outlet pressure constant when it reaches the set value. The intake pressure fluctuation, for values greater than the set values, does not affect the reduced outlet pressure, and furthermore the particular design of the valve prevents exceeding the set value even in transients.

The drainage, to be connected directly to the tank, discharges about 0,8 l/min. The valves are available, upon request, with reduced drainage (0,4 l/min).

" Available even with incorporated check valve upon request, with cracking pressure of 0,5 bar.

		Z3-P	Z5-P	
Maximum operating pressure	bar	bar 250		
Maximum flow rate	l/min	40 110		
Drain flow rate: for Z*-P for Z*-P*R	l/min	0,8 0,4		
Ambient temperature range	°C	-20 / +50		
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt	10 ÷ 400		
Fluid contamination degree	According	to ISO 4406:1999	classe 20/18/15	
Recommended viscosity	cSt	25		
Mass	kg	3,9 6,1		

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

HYDRAULIC SYMBOLS

1 - IDENTIFICATION CODE

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V).

For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

4 - Z3-P OVERALL AND MOUNTING DIMENSIONS

5 - Z5-P OVERALL AND MOUNTING DIMENSIONS

6 - SUBPLATES (see catalogue 51 000)

	Z3-P	Z5-P
Туре	PMSZ3-AI4G with rear ports	PMSZ5-AI6G with rear ports
Port dimensions: - E, U - X, Y	1/2Ž BSP 1/4Ž BSP	1Ž BSP 1/4Ž BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111

Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

23 300/111 ED

SEQUENCE VALVE UNLOADING VALVE T*-P BACKPRESSURE VALVE X*-P BALANCING VALVE

OPERATING PRINCIPLE

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

- The S U T X sequence valves are used for pressure control. They are direct-acting and normally closed.
- They are available in two nominal sizes for flows up to 150 l/min and in four pressure adjustment ranges.
- Opening takes place by means of a pilot pressure that, acting on a small piston, resists the force of the adjustment spring.
- The valve can be easily modified to get any one of the four versions S, U, T, X, turning the upper and the bottom covers in order to obtain the X and Y internal connections, as indicated in par. 7.

The figure represents the section of a type S valve.

		size 3	size 5	
Maximum operating pressure	bar	320 250		
Maximum flow rate	l/min	4060	150	
Ambient temperature range	°C	-20 / +50		
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt	10 ÷ 400		
Fluid contamination degree	According	g to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25		
Mass	kg	5,8	6,7	

HYDRAULIC SYMBOLS

1 - IDENTIFICATION CODE

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

SUTX-P SERIES 20

4 - S U T X 3-P OVERALL AND MOUNTING DIMENSIONS

5 - S U T X 5-P OVERALL AND MOUNTING DIMENSIONS

SUTX-P SERIES 20

6 - APPLICATIONS

"S" The type "S" sequence valve is normally used to successively command two or more actuators: when the pressure in the primary circuit reaches the set value on the valve, it opens and allows the fluid to feed the second circuit branch, keeping the pressure in the first branch.

The valve remains open until the pressure at the intake falls below the set value; under these conditions, the maximum pressure setting on the first circuit branch will be achieved also at the outlet.

It is also used to keep a circuit under pressure when simultaneous supply of various users, requiring the total delivery of the pump, would make the pressure value decrease.

"U" This is normally used in automatic circuits (high-low pressure) for unloading the low pressure pump; this occurs when the pressure in the circuit reaches the set value of the valve.

In this manner it is possible to utilize the total flow of the two pumps for fast movements at low pressure, with electric power saving, using high pressure only for working movements. Furthermore, it is used to allow quick discharge of the large chamber of a high differential cylinder which the directional valve would not be able to drain; in this case the valve piloting is connected to the small chamber of the cylinder.

"T" Normally this is used to create hydraulic resistance (back pressure) to prevent uncontrolled movements, especially in the case of suspended loads.

The valve, normally closed, opens only when the set pressure is reached, and thus the descent of the load occurs in a controlled manner and the descending speed depends on the delivery of the pump.

"X" This is mainly used for load balancing. The piloting pressure can be taken from any point in the plant. The valve stays closed until the pilot pressure reaches the set value.

7 - COVER ORIENTATION FOR ALL THE VERSIONS S, U, T, X

7 - SUBPLATES (see catalogue 51 000)

	SIZE 3	SIZE 5
Type with rear ports	PMSZ3-AI4G	PMSZ5-AI5G
Ports dimensions: E, U X, Y	1/2" BSP 1/4" BSP	1" BSP 1/4" BSP

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

MOUNTING INTERFACES

ZC2 BALANCING VALVES SERIES 51

SUBPLATE MOUNTING

ISO 4401-03 (CETOP 03)

- p max **350** bar
- Q max 25 l/min

OPERATING PRINCIPLE

- The type ZC2 balancing valves act as pressure reducing valves that, besides reducing the pressure from line P to user A, allow the flow to return from user A to discharge T when a pressure greater than the set value is generated in the downstream circuit (user A). (A typical case of hydraulic counterweight or load balancing)
- They have a mounting surface in accordance with ISO 4401 (CETOP RP121H) standards. Port B is never used.

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

Maximum operating pressure	bar	350
Maximum flow rate	l/min	25
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4	406:1999 class 20/18/15
Recommended viscosity	cSt	25
Mass:	kg	1,3

HYDRAULIC SYMBOL

24 300/110 ED

1 - IDENTIFICATION CODE

2 - CHARACTERISTIC CURVES

(values obtained with viscosity of 36 cSt at 50°C)

4 - ZC2 OVERALL AND MOUNTING DIMENSIONS

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

24 300/110 ED

9 - INSTALLATION

The ZC2 valves can be installed in any position without impairing correct operation.

Valves are fixed by means of screws or tie rods on a flat surface with planarity and roughness equal to or better than those indicated in the relative symbols. If minimum values are not observed, fluid can easily leak between the valve and support surface.

6 - FASTENING BOLTS

N. 4 bolts M5x55	
Tightening torque: 5Nm (A screws 8.8)	

7 - SUBPLATES (see cat. 51 000)

Type PMMD-AI3G ports on rear 3/8" BSP Type PMMD-AL3G side ports3/8" BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

DZC5 DZC5R DZC7 DZC8 CETOP P05 ISO 4401-05 (CETOP R05) ISO 4401-07 (CETOP 07) ISO 4401-08 (CETOP 08)

p max 350 bar

Q max (see table of performances)

OPERATING PRINCIPLE

- " The type DZC* balancing valves act as pressure reducing valves that, besides reducing the pressure from line P to user A, allow the flow to return from user A to discharge T when a pressure greater than the set value is generated in the downstream circuit (user A) (a typical case of hydraulic counterweight or load balancing)
- ", They have a mounting surface in accordance with ISO 4401 (CETOP RP121H) standards. Port B is never used.
- " They are available in three different sizes for flow rates up to 500 l/min.

PERFORMANCES (obtained with mineral oil with viscosity of 36 cSt at 50°C)

		DZC5 DZC5R	DZC7	DZC8
Maximum operating pressure:	bar	350		
Maximum flow	l/min	150 300 500		
Ambient temperature range	°C	-20 / +50		
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt	10 ÷ 400		
Fluid contamination degree	According to	ding to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25		
Mass:	kg	6,5	8,7	15

HYDRAULIC SYMBOL

1 - IDENTIFICATION CODE

3 - CHARACTERISTIC CURVES (obtained with mineral oil with viscosity of 36 cSt at 50°C and electronic control cards)

2.1 - Characteristic curves DZC5 and DZC5R

2.2 - Characteristic curves DZC7

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - PILOTING AND DRAINAGE

					Ŷ
	VALVE TYPE	Plug as	ssembly		
		X	Y		X: M5x6 plug to external pilot
IE	INTERNAL PILOT AND EXTERNAL DRAIN	NO	YES		Y: M5x6 plug fo
II	INTERNAL PILOT AND INTERNAL DRAIN	NO	NO		
EE	EXTERNAL PILOT AND EXTERNAL DRAIN	YES	YES		
EI	EXTERNAL PILOT AND	YES	NO	P	
Piloting p Pressure	ressure on X port on T port with interal drain	30	210 2		external pilot Y: M6x8 plug for external drain
Pressure	on T port with external drain		250		
				DZC8	X: M6x8 plug fo external pilot Y: M6x8 plug fo external drain

5 - INSTALLATION

The DZC* valves can be installed in any position without impairing correct operation.

Connect the valve T port directly to the tank. Add any backpressure value detected in the T line to the controlled pressure value. Maximum admissible backpressure in the T line, under operational conditions, is 2 bar. Valves are fixed by means of screws or tie rods on a flat surface with planarity and roughness equal to or better than those indicated in the relative symbols. If minimum values are not observed, fluid can easily leak between the valve and support surface.

6 - DZC5 AND DZC5R OVERALL AND MOUNTING DIMENSIONS

ቁ

M6

Ø11.2 (max)

M6

¢∳

Ø11.2 (max)

7 - DZC7 OVERALL AND MOUNTING DIMENSIONS

8 - DZC8 OVERALL AND MOUNTING DIMENSIONS

9 - SUBPLATES (See catalogue 51 000)

		DZC5	DZC7	DZC8
Model with rear ports	5	PME4-AI5G	PME07-AI6G	
Model with side ports	S	PME4-AL5G	PME07-AL6G	PME5-AL8G
Thread of ports:	P - T - A - B X - Y	3/4Ž BSP 1/4Ž BSP	1Ž BSP 1/4Ž BSP	1½Ž BSP 1/4Ž BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com
31 200/110 ED

RS* DOUBLE-ACTING THROTTLE FLOW CONTROL VALVE SERIES 30

THREADED PORTS CARTRIDGE TYPE

p max (see table of performances)Q max (see table of performances)

OPERATING PRINCIPLE

- The RS* and RS*-I valves are throttle flow control valves for in-line mounting, directly in the line or as a cartridge complete with threading for in-block mounting.
- Adjustment is obtained with a conical throttle that operates in a cylindrical seat and allows a good linearity of the adjusted flow.
- They are also used as flow shut-off valves since they guarantee good sealing when completely closed.
- The valves are always supplied with an adjustment knob that can be locked in any
 position with a transverse positioned grub screw, as may be required.

PERFORMANCES (obtained with mineral oil with viscosity of 36 cSt at 50°C)

Valve code	Port dimensions BSP	Nominal flow rate [l/min]	Mass [kg]	Max. operating pressure [bar]
RS2	1/4"	15	0,2	
RS3	3/8"	30	0,4	400
RS4	1/2"	50	0,6	400
RS5	3/4"	80	1,3	
RS6	1"	150	2,6	
RS7	1 ¼"	200	3,0	320
RS8	1 ½"	220	4,2	-
RS2-I	_	15	0,15	
RS3-I	_	30	0,2	
RS4-I	_	50	0,3	320
RS5-I	_	80	0,6	
RS6-I	_	150	1,2	

Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO	4406:1999 class 20/18/15
Recommended viscosity	cSt	25

HYDRAULIC SYMBOL

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - OVERALL AND MOUNTING DIMENSIONS RS*

4 - OVERALL AND MOUNTING DIMENSIONS RS*-I

dimension	i in mm	max			CH B K	1.6∕ ⊻	N R S		M	E				s	eal exclu	* "BON uded fror	IDED SEAL" n the supply
sigla	ØF	G	н	L	ØМ	Ν	Р	R	S	ØТ	ØU	V	Z	СН	OR	BK	BS*
valvola		max		6H	+ 0.2 0		min	±0.2	+ 0.2 0	H8	max	±0.2	min		type	type	type
RS2-I	50	49.5	26.5	M20x1.5	27	1	12	16.5	1	14	5	13.3	27	27	2043	2043	400-513
RS3-I	70	57.5	30.5	M20x1.5	27	1	12	20	1.2	16	8	15.2	32	27	2050	2050	400-513
RS4-I	80	66.5	40	M27x2	33	1.3	18	28	1.2	19	10	22	41	32	2062	2062	400-520
RS5-I	100	76.5	44	M33x2	40	1.3	18	30.5	1.2	27	12	23	45.5	41	130	130	400-515
RS6-I	120	102	52.5	M42x2	50	1.3	21.5	36.5	1.5	35	16	28.5	55	50	3118	3118	400-516

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24

Tel. +39 0331.895.111

Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

31 200/110 ED

31 210/110 ED

RSN* SINGLE-ACTING THROTTLE FLOW CONTROL VALVE

SERIES 30

THREADED PORTS CARTRIDGE TYPE

p max (see table of performances)Q max (see table of performances)

OPERATING PRINCIPLE

PERFORMANCES (obtained with mineral oil with viscosity of 36 cSt at 50°C)

Valve Code	Port	Nom	inal	Max. flow	Mass	Max. operating		
	dimensions	flow	rate	with open flow		pressure		
	BSP	[l/m	in]	[l/min]	[kg]	[bar]		
RSN2	1/4Ž	1	5	35	0,25			
RSN3	3/8Ž	30)	80	0,5	400		
RSN4	1/2Ž	50)	150	0,75	400		
RSN5	3/4Ž	80)	200	1,6			
RSN6	1Ž	150)	300	3,05			
RSN7	1 ¼Ž	200)	400	3,75	320		
RSN8	1 ½Ž	220)	500	5,75			
RSN2-I	_	15		35	0,13			
RSN3-I	_	30		80	0,25			
RSN4-I	-	50		150	0,34	320		
RSN5-I	_	80)	200	0,62			
Direct check va pressure	alve opening		bar			0,35		
Ambient tempe	erature range			°C		-20 / +50		
Fluid temperat	ure range			°C		-20 / +80		
Fluid viscosity	range			cSt	10 ÷ 400			
Fluid contamin	ation degree		According to ISO 4406:1999 class 20/18/15					
Recommende	d viscosity		cSt 25					

HYDRAULIC SYMBOL

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - OVERALL AND MOUNTING DIMENSIONS RSN*

4 - OVERALL AND MOUNTING DIMENSIONS RSN*-I

dimensions in	mm			OPEI DIRE	N FLOW								*•BON	DED SEA	ALŽ seal e	excluded f	rom the supply
Mahia	ØF	G	н	L	ØМ	Ν	Р	R	S	ØT	ØU	V	Z	СН	OR	BK	BS*
valve		max		6H	+ 0.2		min	± 0.2	+ 0.2	H8	max	± 0.2	min		type	type	type
RSN2-I	50	49	30.5	M20x1.5	27	1	12	20	1.2	16	8	15.2	32	27	2050	2050	400-513
RSN3-I	70	56	40	M27x2	33	1.3	18	28	1.2	19	10	22	41	32	2062	2062	400-520
RSN4-I	80	70	44.5	M33x2	40	1.3	18	30.5	1.2	27	12	23	45.5	41	130	130	400-515
RSN5-I	100	80	52.5	M42x2	50	1.3	21.5	36.5	1.5	35	16	28.5	55	50	3118	3118	400-516

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24

Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

RPC1 PRESSURE AND TEMPERATURE COMPENSATED FLOW CONTROL VALVE

SERIES 41

SUBPLATE MOUNTING

ISO 6263-03 (CETOP 03)

- p max 250 bar
- Q max (see table of performances)

MOUNTING INTERFACE

OPERATING PRINCIPLE

- " The RPC1 valve is a pressure and temperature compensated flow control valve.
- ", The flow is adjusted by a calibrated knob that modulates the opening of the control gap and can be locked in any adjustment position. Adjustment is made with three turns, and upon request one-turn adjustment, RPC1*/M, is available.
- ", It is available in seven different flow rate adjustment ranges from 0,5 l/min up to 30 l/min.

PERFORMANCE RATINGS (obtained with mineral oil with viscosity of 36 cSt at 50°C) 250 Maximum operating pressure Minimum pressure difference between A and B bar 10 Check valve cracking pressure 0,5 Maximum controlled flow rates 0,5-1-4-10-16-22-30 Minimum controlled flow rate (for 0,5-1 and 4 l/min) l/min 0,025 Maximum flow rate in free flow direction 40 °C -20 / +50 Ambient temperature range Fluid temperature range °C -20 / +80 Fluid viscosity range cSt 10 ÷ 400 According to ISO 4406:1999 class 20/18/15 Fluid contamination degree Fluid contamination degree for flows < 0,5 l/min According to ISO 4406:1999 class 18/16/13 Recommended viscosity cSt 25 Mass 1,3 kg RPC1 3 Number of adjustment knob turns RPC1-*/M 1

HYDRAULIC SYMBOLS

32 200/110 ED

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - PRESSURE COMPENSATION

Two throttles in series are in the valve. The first is an opening regulated by the knob; the second, piloted by the pressure upstream and downstream of the first throttle, assures a constant pressure drop across the adjustable throttle. In these conditions, the set flow rate value stays constant within a tolerance range of $\pm 2\%$ of the maximum flow controlled by the valve for maximum pressure variation between the intake and outlet chambers of the valve.

5 - TEMPERATURE COMPENSATION

The valve temperature compensation is obtained with the principle of fluid passage across a thin wall orifice in which the flow rate is not subtantially influenced by the oil viscosity fluctuations. For controlled flows of less than 0,5 l/min and with a temperature difference of 50 °C, flow is increased by about 13% of the set flow value. For higher flow rates, and with the same temperature difference, the flow increase is about 4% of the maximum flow controlled by the valve.

6 - REVERSE FREE FLOW

The RPC1 valve, upon request, is supplied with an incorporated check valve to allow free flow in the direction opposite to the controlled flow, B A.

In this case the valve code becomes RPC1-*/CT.

7 - RPC1-*/CTX

This valve is normally used for intake control and is positioned downstream of the directional valve.

The piloting connection $\bullet PZ$ keeps the compensator in the closed position, thus avoiding the initial speed jump that occurs at the time the distributor sends oil to the valve (see the application diagram, paragraph 11).

8 - RPC1-* OVERALL AND MOUNTING DIMENSIONS

9 - RPC1-*/CTX OVERALL AND MOUNTING DIMENSIONS

10 - SUBPLATES (look at datasheet 51 000)

Туре	PMRPC1-AI3G with rear ports	
	PMRPC1-AL3G with side ports	
Туре	PMMD-AI3G with rear ports, with user T plugged	only for valve
	PMMD-AL3G with side ports, with user T plugged	RPC1-*/CTX
Port dimension	3/8Ž BSP	

11 - APPLICATION EXAMPLES

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

MOUNTING INTERFACE

PERFORMANCES (obtained with mineral oil with viscosity of 36 cSt at 50°C)

Maximum operating pressure Minimum pressure difference between A and B	bar	250 12
Maximum controlled flow rates Minimum controlled flow rate (for 1 and 4 l/min)	l/min	1-4-10-16-22 0,035
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree Fluid contamination degree for flows < 0,5 l/min	According to ISO According to ISC	4406:1999 class 20/18/15 4406:1999 class 18/16/13
Recommended viscosity	cSt	25
Mass	kg	1,5
Number of adjustment knob turns	RPC1/T3 RPC1-/T3/M	3 1

RPC1-T3

PRESSURE AND TEMPERATURE COMPENSATED THREE-WAY FLOW CONTROL VALVE SERIES 41

SUBPLATE MOUNTING ISO 6263-03 (CETOP 03)

p max 250 bar

Q max (see table of performances)

OPERATING PRINCIPLE

- " The pressure and temperature compensated three-way flow control valves serve to control the flow sent to the actuator and to discharge it, which exceeds that required, back to tank at system pressure rather than at relief value pressure.
- ", The flow rate adjustment range is carried out with three turns of the knob and an indicator shows the number of turns made. A one-turn adjustment on the knob, RPC1*/M, is available upon request.
- " The adjustment knob can be locked in any position in the adjustment range by a screw.

HYDRAULIC SYMBOL

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

4 - PRESSURE COMPENSATION

Two throttles in series are in the valve. The first is an opening regulated by the knob; the second, piloted by the pressure upstream and downstream of the first throttle, assures a constant pressure drop across the adjustable throttle. In these conditions, the set flow rate value stays constant within a tolerance range of $\pm 2\%$ of the maximum flow controlled by the valve for maximum pressure variation between the intake and outlet chambers of the valve.

5 - TEMPERATURE COMPENSATION

The valve temperature compensation is obtained with the principle of fluid passage across a thin wall orifice in which the flow rate is not subtantially influenced by the oil viscosity fluctuations. For controlled flows of less than 0,5 l/min and with a temperature difference of 50 °C, flow is increased by about 13% of the set flow value. For higher flow rates, and with the same temperature difference, the flow increase is about 4% of the maximum flow controlled by the valve.

RPC1-T3 SERIES 41

6 - OVERALL AND MOUNTING DIMENSIONS

7 - APPLICATION EXAMPLE

8 - SUBPLATES (see datasheet 51 000)

Туре	PMMD-AI3G with rear ports with user P plugged
Туре	PMMD-AL3G with side ports with user P plugged
Port dimension	3/8Ž BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

HYDRAULIC SYMBOL

RPC* PRESSURE AND TEMPERATURE COMPENSATED FLOW CONTROL VALVES

SUBPLATE MOUNTING

RPC2	ISO 6263-06 (CETOP 06)
RPC3	ISO 6263-07 (CETOP 07)

OPERATING PRINCIPLE

- " The RPC * valve is a pressure and temperature compensated flow control valve.
- ", The flow rate is adjusted with a calibrated knob that modulates the opening of the control gap and can be locked in any adjustment position by a screw.
- ", The flow rate adjustment range is carried out with six turns of the knob, with indication of the number of turns made. A one-turn adjustment on the knob, RPC*/M, is available upon request.

PERFORMANCES (obtained with mineral oil with viscosity of 36 cSt a	RPC2	RPC3			
Maximum operating pressure Check valve cracking pressure Minimum pressure difference between E and U	bar	320 250 0,5 0,5 10 12			
Maximum controlled flow rates Minimum controlled flow rate	l/min	22 - 38 -70 0,050	100 - 150 0,120		
Ambient temperature range	°C	-20 / +50			
Fluid temperature range	°C	-20 / +80			
Fluid viscosity range	cSt	10 ÷ 400			
Fluid contamination degree According to ISO 4406:1999 class 20/18/1			6:1999 class 20/18/15		
Recommended viscosity cSt 25			5		
Mass	kg	3,6	7,8		

32 300/112 ED

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

4 - PRESSURE COMPENSATION

Two throttles in series are in the valve. The first is an opening regulated by the knob; the second, piloted by the pressure upstream and downstream of the first throttle, assures a constant pressure drop across the adjustable throttle. In these conditions, the set flow rate value stays constant within a tolerance range of \pm 3% of the maximum flow controlled by the valve for the maximum pressure variation between inlet and outlet chambers of the valve.

5 - TEMPERATURE COMPENSATION

A device located on the first throttle which is sensitive to the temperature fluctuations corrects the position keeping the controlled flow more or less unaltered even should the oil viscosity change.

The fluctuation of the set flow rate stays within \pm 2,5% of the maximum flow controlled by the valve.

6 - REVERSE FREE FLOW

The RPC* valves, upon request, are supplied with an incorporated check valve to allow free flow in the direction opposite of the controlled flow. In this case the valve code becomes RPC*-**CT**.

7 - COMPENSATING STROKE GOVERNOR

In order to avoid jumps in the actuator when it is started, the RPC valve can be equipped with a special accessory that controls the compensating stroke, thus preventing it from making uncontrolled movements.

Add the suffix **RC** to the identification code to request this governor. See paragraph 1.

RPC*

8 - RPC2 SERIES 31 OVERALL AND MOUNTING DIMENSIONS

9 - RPC3 SERIES 43 OVERALL AND MOUNTING DIMENSIONS

RPC*

10 - SUBPLATES (see catalogue 51 000)

	RPC2	RPC3
Туре	PMRPC2-AI4G rear ports	PMRPC3-AI6G rear ports
Port dimensions	1/2Ž BSP	1Ž BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

HYDRAULIC SYMBOLS

RPC*-*T3

PRESSURE AND TEMPERATURE COMPENSATED THREE-WAY FLOW CONTROL VALVES

SUBPLATE MOUNTING

RPC-2T3	ISO 6263-06 (CETOP 06)
RPC-3T3	ISO 6263-07 (CETOP 07)

OPERATING PRINCIPLE

- The RPC*-*T3 valve is a pressure and temperature compensated three-way flow control valve.
- It allows the control of flow rate to an actuator by discharging the flow exceeding that required by the plant at any one moment. As a consequence, energy consumption is reduced and appropriate at every instant throughout the cycle.
- Single-turn adjustment knob (RPC**/M) and built-in pressure relief valve (RPCQ*) are available upon request.

PERFORMANCE RATINGS (obtained with mineral oil with viscosity of 36 cSt at 50°C)

		RPC*-2T3	RPC*-3T3	
Maximum operating pressure Minimum pressure difference between E and U	bar	320 250 10 12		
Maximum controlled flow rate Minimum controlled flow rate	l/min	50 150 0,060 0,130		
Ambient temperature range	°C	-20 / +50		
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt	10 ÷ 400		
Fluid contamination degree Fluid contamination degree for flow rate <0,5 l/min		According to ISO 4406:1999 class 20/18/15 According to ISO 4406:1999 class 18/16/13		
Recommended viscosity	cSt	25		
Mass	kg	4,7 9		

32 350/112 ED

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 $^\circ$ C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

4 - PRESSURE COMPENSATION

Two throttles in series are in the valve. The first is an opening regulated by the knob; the second, piloted by the pressure upstream and downstream of the first throttle, assures a constant pressure drop across the adjustable throttle. In these conditions, the set flow rate value stays constant within a tolerance range of $\pm 3\%$ of the maximum flow controlled by the valve for maximum pressure variation between the intake and outlet chambers of the valve.

5 - TEMPERATURE COMPENSATION

A device located on the first throttle which is sensitive to the temperature fluctuations corrects the position keeping the controlled flow more or less unaltered even should the oil viscosity change.

The fluctuation of the set flow rate stays within $\pm 2,5\%$ of the maximum flow controlled by the valve.

RPC*-*T3

6 - RPC*-2T3 SERIES 31 OVERALL AND MOUNTING DIMENSIONS

7 - RPC*-3T3 SERIES 43 OVERALL AND MOUNTING DIMENSIONS

RPC*-*T3

11 - APPLICATION EXAMPLES

12 - SUBPLATES (see catalogue 51 000)

	RPC* - 2T3	RPC* - 3T3
Туре	PMRPCQ2-AI4G rear ports	PMRPCQ3-AI6G rear ports
E, U, T port dimensions	1/2" BSP	1" BSP
X port dimensions	1/4" BSP	1/4" BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

OPERATING PRINCIPLE

CP1R*-W ROLLER OPERATED FAST/SLOW SPEED SELECTION VALVE

SERIES 21

THREADED PORTS

p max 70 bar
 Q max 40 l/min

- " The CP1R*-W valve is used for the selection and control of fast/slow speed of hydraulic axis by mechanical roller operation.
- " The slow working speed adjustment is obtained by using a pressure compensated flow control valve.

The special shape of the control openings allows fine adjustment even with very low flow rates.

- " Adjustment of the flow rate is carried out with three turns of the knob that can be locked in any position with a screw.
- " It is available in two configurations: normally open CP1RA, normally closed CP1RC.
- ", It is supplied with an incorporated check valve that allows free passage of the reverse flow.

CONFIGURATIONS (see Hydraulic symbols table)

... CP1RA-W: normally open - fast movement with roller in rest position and controlled slow movement with roller in operation.

... CP1RC-W: normally closed - controlled slow movement with roller in rest position and fast movement with roller in operation.

PERFORMANCES (obtained with mineral oil with viscosity of 36 cSt at 50°C)

Maximum operating pressure		bar	70
Fast movement maximum flow rate		l/min	40
	max	l/min	4 - 10 - 16
Controlled slow monement flow rate	min	l/min	0,1
Roller working movement		mm	6
Ambient temperature range		°C	-20 / +50
Fluid temperature range		°C	-20 / +80
Fluid viscosity range		cSt	10 ÷ 400
Fluid contamination degree	According cla	to ISO 4406:1999 Iss 20/18/15	
Recommended viscosity		cSt	25
Massa		kg	3,2

HYDRAULIC SYMBOLS

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

36 200/111 ED

OPERATING PRINCIPLE

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

FERFORINAINCES (measured with mineral oil of Viscosity 36 cSt at 50°C)					
Maximum operating pressure	bar	150			
Cracking pressure of the check valve	bar	0,5			
Maximum flow rate	l/min	40			
Needed force on the lever to operate: - at beginning - at end stroke	Kg	6,8 12,0			
Maximum leakage with closed valve (p 100 bar)	l/min	0,05			
Stroke (from all open to completely closed)	mm	20			
Ambient temperature range	°C	-20 / +50			
Fluid temperature range	°C	-20 / +80			
Fluid viscosity range	cSt	10 ÷ 400			
Fluid contamination degree	According to ISC	0 4406:1999 class 20/18/15			
Recommended viscosity	cSt	25			
Mass	kg	2,5			

K4WA/C DECELERATION VALVE SERIES 10

THREADED PORTS

p max 150 barQ max 40 l/min

- ", The K4WA/C valve is a mechanically operated decelerating valve with BSPP threaded ports for in-line mounting on hydraulic lines.
- ", It is normally used to change the movement speed of the hydraulic axis, such as changing from fast to slow, or for slow stops.
- ", The valve is normally open in the free condition and allows free flow passage from port P to port A.

The flow is partially or completely shut off by operating the mechanical drive of the valve.

" It is always supplied with a built in check valve that allows reverse free flow from port A to port P.

HYDRAULIC SYMBOL

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

Tel. +39 0331.895.111 Fax +39 0331.895.339

DOLEODINAMICA DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

MOUNTING SURFACE

PERFORMANCES (with mineral oil of viscosity of 36 cSt at 50°C)

		<i>c</i> ,		
Maximum operating pressure: - ports P - A - B - port T	bar	250 160		
Maximum flow rate	l/min	20		
Pressure drop p-Q	see	paragraph 4		
Operating limits	see	see paragraph 5		
Electrical features	see	see paragraph 7		
Electrical connections	C	DIN 43650		
Ambient temperature range	°C	-20 / +50		
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt	10 ÷ 400		
Fluid contamination degree	According cla	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25		
Masse: single solenoid valve double solenoid valve	kg 0,8 1,1			

DL2 SOLENOID OPERATED DIRECTIONAL CONTROL VALVE COMPACT VERSION

SERIES 10

SUBPLATE MOUNTING ISO 4401-02 (CETOP R02)

p max 250 bar
 Q max 20 l/min

OPERATING PRINCIPLE

- ", Direct acting, subplate mounting directional control valve, with mounting surface according to ISO 4401-02 (CETOP RP 121H) standards.
- ", Compact design with reduced solenoid dimensions, suitable for mini-power packs and mobile and agricultural applications.
- ", The valve body is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop. Wet armature solenoids with interchangeable coils are used (for further information on solenoids see

further information on solenoids see paragraph 7).

- ", The valve is supplied with 4 way designs, with 2 or 3 positions and with several interchangeable spools with different porting arrangements.
- " The valve is available with DC or rectified current solenoids.

2 - SPOOL TYPE

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - PRESSURE DROPS p-Q (obtained with viscosity of 36 cSt at 50 °C)

ENERGIZED VALVE

	FLOW DIRECTIONS					
SPOOL	ΡA	ΡВ	ΑT	ΒТ		
	CURVES ON GRAPHS					
S1, SA1, SB1	1 1 1 1					
S2, SA2, SB2	1	1	1	1		
S3, SA3, SB3	1	1	1	1		
S4, SA4, SB4	2	2	2	2		
TA, TB	1	1	1	1		

For the pressure drop with a de-energized valve P T of the spools S2 and S4 refer to the curve 1.

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The operating limits can be considerably reduced if a 4-way valve is used as 3-way valve with port A or B plugged or without flow.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

6 - SWITCHING TIMES

The values indicated are obtained with spool S1, according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

SPOOL	CURVE
S1, S3, S4, TA, TB	1
\$2	2

TIMES (±10%) [ms]			
ENERGIZING	DE-ENERGIZING		
25 ÷ 75	15 ÷ 25		

7 - ELECTRICAL FEATURES

7.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated 360°, to suit the available space.

The interchangeability of coils of different voltages is allowed within the same type of supply current, alternating or direct.

NOTE: In order to further reduce the emissions, with DC supply, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

SUPPLY VOLTAGE FLUCTUATION	+5% -10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95 EC
CLASS OF PROTECTION : Atmospheric agents CEI EN 60529 Coil insulation (VDE 0580) Impregnation:	IP 65* class H class F

(*) The protection degree is guaranteed only with the connector correctly connected and installed

7.2 - DC valve - Current and power consumption

In direct current energizing, current consumption stays at fairly constant values, essentially determined by Ohm•s law: V = R x I

•R• coil must be used when the valve is fed with AC power supply subsequently rectified by means of rectifier bridge, externally or incorporated in the •DŽ type connector (see cat. 49 000). The table shows current and power consumption values for DC and rectified current coil types.

	Nominal voltage [V]	Resistance at 20°C [] (±1%)	Current consumption [A] (±5%)	Power co (+5% [W]	nsumption -10%) [VA]
D12	12	6.7	2.4	28.8	
D24	24	24	1.2	28.8	
R110	110	350	0.3		29.7
R220	230	1500	0.15		31

8 - INSTALLATION

Configurations with centering and return springs can be mounted in any position.

Valve fitting takes place by means of screws or tie rods, fixing the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

9 - DL2 OVERALL AND MOUNTING DIMENSIONS

10 - ELECTRIC CONNECTORS

The solenoid valves are not supplied with connector. Connectors must be ordered separately. For the identification of the connector type to be ordered, please see catalogue 49 000.

11 - FASTENING BOLTS AND SEALING RINGS

Single valve fastening: 4 SHC screws M5x35 - ISO 4762
Tightening torque: 5 Nm (bolts A 8.8)
Threads of mounting holes: M5x10
Sealing rings: N. 4 KANTSEAL type DKAR00011 (7.65x1.68x1.68) - 70 Shore

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

MOUNTING INTERFACE

PERFORMANCES (obtained with mineral oil with viscosity of 36 cSt at 50°C)

Maximum operating pressure: - P - A - B ports			CC	CA	
		bar	350		
- T port			210 160		
Maximum flowrate		l/min	100		
Pressure drops p-Q		see paragraph 4			
Operating limits		see paragraph 6			
Electrical features		see paragraph 7			
Electrical connections		see paragraph 11			
Ambient temperature range		°C -20 / +50			
Fluid temperature range		°C -20 / +80			
Fluid viscosity range		cSt	10 ÷	400	
Fluid contamination degree		according to ISO 4406:1999 class 20/18/15		1999 5	
Recommended viscosity		cSt	25		
Mass: single solenoid double solenoi	l valve d valve	kg	kg 1,5 2		

DS3 SOLENOID OPERATED DIRECTIONAL CONTROL VALVE

SUBPLATE MOUNTING ISO 4401-03 (CETOP 03)

p max **350** bar Q max **100** l/min

OPERATING PRINCIPLE

- ", Direct acting, subplate mounting directional control valve, with mounting surface according to ISO 4401 (CETOP RP121H) standards.
- ", The valve is supplied with 3 or 4 ways designs, with 2 or 3 positions with a wide range of interchangeable spools.
- , The valve body is made with high strength iron castings
 - provided with wide internal passages in order to minimize the flow pressure drop. Wet armature solenoids with interchangeable coils are used (for further information on solenoids see par. 7).
 - ", The valve is available with DC or AC solenoids. DC solenoids can also be fed with AC power supply, by using connectors with a built-in rectifier bridge (see paragraphs 6.4 and 7.2).
 - " The DC valve is also available in a soft-shifting version (see par. 14).
 - " Alternative to the standard manual override there are lever, push, boot and mechanical detent devices.

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - SPOOL TYPE

2 solenoids - 3 positions with spring centering		
é		
S1		
S2		
S3		
S4		
S5		
S6		
S7	# I HEHXE	
S8		
S9		
S10		
S11		
S12		
S17		
S18		
S19		
S20		
S21		
S22		
S23		
S26		
S27		
S28		
S29		
_		

Type ICC.
2 solenoids - 2 positions
with mechanical retention

a	A B a <mark>∠a b</mark> ∰ b
RK	
RK02	
RK1	
1RK	

Type **SA***: 1 solenoid side A 2 positions (central + external) with spring centering

	a <mark>∠a 0</mark> [™] P T
SA1	
SA2	
SA3	
SA4	

Type **RSA***: 1 solenoid side A 2 positions (external + central) with return spring

;	A B D D P T
RSA1	
RSA2	
RSA3	
RSA4	

Type **TA**: 1 solenoid side A 2 external positions with return spring

Type **SB***: 1 solenoid side B

2 positions (central + external) with spring centering

Type **RSB***: 1 solenoid side B 2 positions (external + central) with return spring

	A B Ma Obb
RSB1	
RSB2	
RSB3	
RSB4	┉┋┋╪╔═┺┓

Type **TB**: 1 solenoid side B 2 external positions with return spring

Besides the diagrams shown, which are the most frequently used, other special versions are available: consult our technical department for their identification, feasibility and operating limits.

4 - PRESSURE DROPS p-Q (obtained with viscosity 36 cSt at 50 °C)

For pressure drops between A and B lines of spools S10, S20, S21, S22 and S23, which are used in the regenerative diagram, refer to curve 5.

PRESSURE DROPS WITH VALVE IN ENERGIZED POSITION

	FLOW DIRECTION				
SPOOL TYPE	ΡA	ΡВ	ΑT	ΒT	
	CURVES ON GRAPH				
S1, SA1, SB1	2	2	3	3	
S2, SA2, SB2	1	1	3	3	
S3, SA3, SB3, RSA3, RSB3	3	3	1	1	
S4, SA4, SB4, RSA4, RSB4	5	5	5	5	
S5	2	1	3	3	
S6	2	2	3	1	
S7, S8	4	5	5	5	
S9	2	2	3	3	
S10	1	3	1	3	
S11	2	2	1	3	
S12	2	2	3	3	
S17	2	2	3	3	
S18	1	2	3	3	
S19	2	2	3	3	
S20	1	5	2		
S21	5	1		2	
S22	1	5	2		
S23	5	1		2	
TA, TB	3	3	3	3	
TA02, TB02	2	2	2	2	
TA23, TB23	3	3			
RK	2	2	2	2	
RK02	2	2	2	2	
RK1, 1RK	2	2	2	2	

PRESSURE DROPS WITH VALVE IN DE-ENERGIZED POSITION

	FLOW DIRECTION				
SPOOL TYPE	ΡA	РВ	ΑT	ВT	ΡТ
		CURVI	ES ON G	GRAPH	
S2, SA2, SB2					2
S3, SA3, SB3, RSA3, RSB3			3	3	
S4, SA4, SB4, RSA4, RSB4					3
S5		4			
S6				3	
S7, S8			6	6	3
S10	3	3			
S11			3		
S18	4				
S22			3	3	
S23			3	3	

5 - SWITCHING TIMES

The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

	TIMES		
SPOOL TYPE	ENERGIZING	DE-ENERGIZING	
DC	25 ÷ 75 ms	15 ÷ 25 ms	
AC	10 <u>÷</u> 25 ms	15 ÷ 40 ms	

6 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

The limits for TA02 and TA spools refer to the 4-way operation. The operating limits of a 4-way valve in 3-way operation or with port A or B plugged or without flow are shown in the chart on the next page. The performance of the DC solenoid powered by AC with rectifier connectors are at par. 6.4. The performances of the soft-shift valve are shown at par. 14.

6.1 valves in standard operation

DC SOLENOID VALVE

AC SOLENOID VALVE

SBOOL	CURVE		
SPOOL	ΡA	ΡВ	
S1,SA1,SB1	1	1	
S2, SA2, SB2	2	2	
S3, SA3, SB3	3	3	
S4, SA4, SB4	4	4	
S5	5	5	
S6	4	6	
S7	4	4	
S8	4	4	
S9	7	7	
S10	7	7	
S11	4	6	
S12	1	1	
S17	4	4	
S18	5	5	
S19	4	4	
S20	6*	6	
S21	6	6*	
S22	9*	6	
S23	6	9*	
TA, TB	7	7	
TA02, TB02	8	8	
TA23, TB23	2	2	
RK	7	7	
RK02	8	8	
RK1, 1RK	7	7	

SPOOL	CURVE		
SPOOL	ΡA	ΡВ	
S1,SA1,SB1	1	1	
S2, SA2, SB2	2	2	
S3, SA3, SB3	3	3	
S4, SA4, SB4	1	1	
S5	5	5	
S6	6	6	
S7	4	4	
S8	4	4	
S9	7	7	
S10	8	8	
S11	6	6	
S12	2	2	
S17	7	7	
S18	5	5	
S19	7	7	
S20	10*	10	
S21	10	10*	
S22	10*	10	
S23	10	11*	
TA, TB	1	1	
TA02, TB02	1	1	
TA23, TB23	2	2	
RK	8	8	
RK02	9	9	
RK1, 1RK	8	8	

* Performance obtained for a valve with A and B lines connected the one to the piston-side chamber and the other to the rod-side chamber of a double-acting cylinder with area ratio 2:1.

SPOOL	CURVE
RSA1	12
RSA2	
RSA3	14
RSA4	15

6.2 4-way valve in 3-way operation

Operating limits of a 4-way valve in 3-way operation or with port A or B plugged or without flow.

6.3 AC solenoid valve with coil A110 fed with 110V - 60 Hz

SPOOL	CURVE	
	ΡA	ΡВ
S1,SA1, SB1	1	1
S2, SA2, SB2	2	2
S3, SA3, SB3	3	3
S4, SA4, SB4	4	4
S9	5	5
TA, TB	2	2
RK	6	6

6.4 Operating limits for DC solenoid valves fed with AC with rectifier connectors.

SPOOL	CURVE	
	ΡA	ΡB
S1, SA1, SB1	2	2
S2, SA2, SB2	3	3
S3, SA3, SB3	4	4
S4, SA4, SB4	2	2
S9	5	5
TA, TB	6	6
RK	1	1
7 - ELECTRICAL FEATURES

7.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated 360° , to suit the available space.

Protection	from	atmos	pheric	agents	CEI	ΕN	60529
1 1010001011		uunoo		agento	~		00020

Plug-in type	IP 65	IP 67	IP 69 K
K1 DIN 43650	x (*)		
K2 AMP JUNIOR	х	x (*)	
K7 DEUTSCH DT04 male	х	х	x (*)
K12 DUAL DIN 43650	х	x (*)	

(*) The protection degree is guaranteed only with the connector correctly connected and installed

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	18.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95/EC
CLASS OF PROTECTION : Coil insulation (VDE 0580) Impregnation: (DC valve) (AC valve)	class H class F class H

NOTE: In order to further reduce the emissions, with DC supply, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

7.2 Current and absorbed power for DC solenoid valve

The table shows current and power consumption values relevant to the different coil types for DC. The rectified current supply takes place by fitting the valve (with the exception of D12 coil) with an alternating current source (50 or 60 Hz), rectified by means of a bridge built-in to the \bullet DŽ type connectors (see cat. 49 000), by considering a reduction of the operating limits (see diagram at paragraph 6.4).

Coils for direct current (values ±5%)

	Nominal	Resistance	Current	Power		Coil code	
	voltage	at 20°C	consumpt.	consumpt			
	[V]	[]	[A]	[W]	K1	K2	K7
D12	12	4,4	2,72	32,7	1903080	1903100	1902940
D14	14	7,2	1.93	27	1903086		
D24	24	18,6	1,29	31	1903081	1903101	1902941
D28	28	26	1,11	31	1903082		
D48	48	78,6	0,61	29,5	1903083		
D110	110	423	0,26	28,2	1903084		
D220	220	1692	0,13	28,2	1903085		

7.3 Current and absorbed power for AC solenoid valve

The table shows current and power consumption values at inrush and at holding, relevant to the different coil types for AC current.

Suffix	Nominal Voltage [V]	Freq. [Hz]	Resistance at 20°C [] (±1%)	Current consumption at inrush [A] (±5%)	Current consumption at holding [A] (±5%)	Power consumption at inrush (±5%) [VA]	Power consumption at holding (±5%) [VA]	Coil Code K1 e K12
A24	24		1,46	8	2	192	48	1902830
A48	48	50	5,84	4,4	1,1	204	51	1902831
A110	110V-50Hz		22	1,84	0,46	192	48	1000000
ATTO	120V-60Hz	50/60	32	1,56	0,39	188	47	1902032
A 220	230V-50Hz	50/60	140	0,76	0,19	176	44	1002922
A230	240V-60Hz		140	0,6	0,15	144	36	1902033
F110	110	60	26	1,6	0,4	176	44	1902834
F220	220	00	106	0.8	0.2	180	45	1902835

Coils for alternating current (values ± 5%)

8 - OVERALL AND MOUNTING DIMENSIONS FOR DC SOLENOID VALVES

10 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal. Valve fixing takes place by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity and/or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

11 - ELECTRIC CONNECTIONS

connection for DIN 43650 connector type code **K1** (standard)

connection for AMP JUNIOR connector type code **K2**

connection for DEUTSCH DT06-2S male connector type code **K7**

connection for DUAL DIN 43650 connector type code **K12**

CONNECTOR M12x1 CONNECTION SCHEME

In K12 version the valve will be delivered together with the connector DUAL DIN 43650 with M12 connection already mounted on K1 coils. DUAL DIN connector allows to power two solenoids with a single cable with socket M12.

12 - ELECTRIC CONNECTORS

The solenoid operated valves are delivered without connector, except the version K12, where the connector is delivered together with the valve. For coils with standard electrical connections K1 type (DIN 43650) the connectors can be ordered separately. For the identification of the connector type to be ordered please see cat. 49 000. For K2 and K7 connection type the relative connectors are not available.

13 - MANUAL OVERRIDES

13.1 - Manual override, boot protected

13.2 - CH-DS3/10 Lever manual override (only for DC solenoid valve)

13.3 - CP-DS3/10 Push manual override (only for DC solenoid valve)

13.5 - CPK-DS3/10 Push manual override with mechanical retention (only for DC solenoid valve)

13.4 - CK-DS3/10 Knob manual override (only for DC solenoid valve)

When the set screw is screwed and its point is aligned with the edge of the knob, tighten the knob till it touches the spool: in this position the override is not engaged and the valve is de-energized. After adjusting the override, tighten the set screw in order to avoid the knob loosing.

Spanner: 3 mm

Code: 3401150009

14 - SOFT-SHIFTING VERSIONS FOR DC SOLENOID VALVE

Identification code

This version enables hydraulic actuators to perform a smooth start and stop by reducing the speed of movement of the valve spool.

The diagram on the side shows the operating limits of the spools available in the soft-shifting version (**NOTE**: for this version, the S9 spool must be used instead of the S3 one).

The table on the side shows the switching times. The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50° C.

The shifting time and characteristics curves, are influenced by the viscosity (and thus by the temperature) of the operating fluid. Moreover, times can vary according to the flow rate and operating pressure values of the valve.

For the correct functioning of the soft-shifting, ensure that the solenoid tubes are always filled with oil. For this purpose, we recommend to install a backpressure valve set at $1 \div 2$ bar on T line.

SPOOL	CURVE	TIMES [ms]			
		ENERGIZING	DE-ENERGIZING		
S1, S12	1	350	200 ÷ 300		
S2F	2	400	100 ÷ 250		
S4F	4	350	150 ÷ 300		
S9	1	400	200 ÷ 300		
TA12, TB12	3	180	200 ÷ 300		
TA23, TB23		300	200 ÷ 300		

15 - PORT RESTRICTOR PLUGS

Port restrictor plugs are recommended for restricting when flows can occur during the switching processes, which exceed the performance limit of the valve or for circuit dampening.

The port restrictor plugs can be ordered separately with the part numbers shown at left.

Ø (mm)	part number
blank	0144162
0.6	0144163
0.8	0144033
1	0144034

Ø (mm)	part number
1.2	0144035
1.5	0144036
1.8	0144164
2	0144165

16 - SPARE PARTS FOR DC SOLENOID VALVE

17 - SPARE PARTS FOR AC SOLENOID VALVE

18 - VALVE FASTENING BOLTS

4 fastening bolts SHC M5x30 Tightening torque 5 Nm (bolts A 8.8)

19 - SUBPLATES (See catalogue 51 000)

Type PMMD-AI3G with rear ports 3/8Ž BSP Type PMMD-AL3G with side ports 3/8Ž BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 211/111 ED

MOUNTING INTERFACE

PERFORMANCES (with mineral oil of viscosity of 36 cSt at 50°C)

		•)		
Maximum operating pressure:		CC	CA	
- ports P - A - B	bar	28	80	
- port T		250	160	
Maximum flow rate	l/min	5	60	
Pressure drop p-Q	see	paragraph 4		
Operating limits	see	see paragraph 5		
Electrical features	see paragraph 7			
Electrical connections	see	see paragraph 12		
Ambient temperature range	°C	-20 /	[/] +50	
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt	10 ÷	400	
Fluid contamination degree	according cla	to ISO 4406 ss 20/18/15	:1999	
Recommended viscosity	cSt	cSt 25		
Masse: single solenoid valve	kg	kg 1.4		

DL3 SOLENOID OPERATED DIRECTIONAL CONTROL VALVE COMPACT VERSION

SUBPLATE MOUNTING

ISO 4401-03 (CETOP 03)

- p max 280 bar
- Q max 50 l/min

OPERATING PRINCIPLE

- ", Direct acting, subplate mounting directional control valve, with mounting surface according to ISO 4401-03 (CETOP RP 121H) standards.
- ", Compact design with reduced solenoid dimensions, suitable for mini-power packs and mobile and agricultural applications.
- " The valve body is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop. Wet armature
 - solenoids with interchangeable coils are used (for further information on solenoids see paragraph 7).
 - ", The valve is supplied with 3 or 4 way designs and with several interchangeable spools with different porting arrangements.
 - ", The valve is available with DC or AC current solenoids and with several types of electrical connections to cover various installation requirements (see paragraphs 7, 12 and 13).
 - ", The DC valve comes with boot protected manual override which ensures a protection degree IP69K with connections type K7 and K8.

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - SPOOL TYPE

4 - PRESSURE DROPS p-Q (obtained with viscosity of 36 cSt at 50 °C)

EN	IERG	JZED	VAL	VE

		FLOW	/ DIREC	TIONS	
SPOOL	ΡA	ΡВ	AT	ВT	ΡТ
		CURVE	S ON G	RAPHS	5
S1	1	1	1	1	-
S2	1	1	2	2	3
S3	3	3	2	2	-
S4	4	4	4	4	5
RK	1	1	1	1	-
TA	3	3	3	3	-

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values indicated in the graphs are relevant to the standard solenoid valve. The operating limits can be considerably reduced if a 4-way valve is used as 3-way valve with port A or B plugged or without flow.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

SPOOL	CURVE
S1, RK, TA	1
S2	2
S3	3
S4	4

SPOOL	CURVE
S1, RK, TA	1
S2	2
S3	3
S4	4

6 - SWITCHING TIMES

The values indicated are obtained with spool S1, according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

	TIMES (±10%) [ms]			
SUPPLY	ENERGIZING	DE-ENERGIZING		
DC	25 ÷ 75	15 ÷ 25		
AC	10 ÷ 25	15 ÷ 30		

7 - ELECTRICAL FEATURES

7.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated +/- 90° , to suit the available space.

The interchangeability of coils of different voltages is allowed within the same type of supply current, alternating or direct.

Protection	from	atmos	oheric	agents	CEI	EN 60529
1 1010011011		aunos	pricito	ugento	~	

Plug-in type	IP 65	IP 67	IP 69 K
K1 DIN 43650	x (*)		
K2 AMP JUNIOR	х	x (*)	
K4 outgoing cable	x	х	
K7 DEUTSCH DT04 male	x	х	x (*)
K8 AMP SUPER SEAL	х	х	x (*)

(*) The protection degree is guaranteed only with the connector correctly connected and installed

NOTE: In order to further reduce the emissions, with DC supply, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC)	In compliance with 2004/108/CE
LOW VOLTAGE	In compliance with 2006/95 CE
CLASS OF PROTECTION : Coil insulation (VDE 0580) Impregnation:	class H class H

7.2 DC valve - Current and power consumption

In direct current energizing, current consumption stays at fairly constant values, essentially determined by Ohm•s law: V = R x I

•RŽ coil must be used when the valve is fed with AC power supply subsequently rectified by means of rectifier bridge, externally or incorporated in the •DŽ type connector (see cat. 49 000).

The table shows current and power consumption values for CC and RC coil types.

	Nominal voltage	Resistance at 20°C	Current consumption	Power co (±	nsumption 5%)			Coil code		
	[V]	[](±1%)	[A] (±5%)	[W]	[VA]	K1	K2	K4	K7	K8
D12	12	5,4	2,2	26,5		1902740	1902750	1902770	1902980	1903020
D24	24	20,7	1,16	27,8		1902741	1902751	1902771	1902981	1903021
D28	28	27,5	1,02	28,5		1902744				
D48	48	82	0,58	28		1902745				
R110	110	363	0,25		27,2	1902742				
R230	230	1640	0,11		26,4	1902743				

7.3 AC valve - Current and power consumption

In alternating current energizing, an initial phase (maximum movement) is seen, during which the solenoid consumes elevated value currents (inrush current); the current values diminish during the plunger stroke until it reaches the minimum values (holding current) when the plunger reaches the stroke end. The table shows the values of absorption at the inrush and at holding.

	Nominal voltage [V]	Freq. [Hz]	Resistance at 20°C [] (±5%)	Current consumption at inrush [A] (±10%)	Current consumption at holding [A] (±10%)	Power consumption at inrush (±10%) [VA]	Power consumption at holding (±10%) [VA]	Coil code K1
A24	24		2,7	4,5	1,47	109,2	35,3	1903190
A48	48	50	13,7	2,3	0,79	110,9	37,9	1903191
A110	110	50	73,4	1,0	0,31	107,8	34,1	1903192
A230	230		320	0,5	0,16	112,7	36,8	1903193

8 - DL3 DC OVERALL AND MOUNTING DIMENSIONS

9 - DL3 AC OVERALL AND MOUNTING DIMENSIONS

10 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal.

Valve fitting takes place by means of screws or tie rods, fixing the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

11 - OPTIONAL MANUAL OVERRIDES

11.1 - Boot protected manual override

On the DC version the boot override is integrated in the coil locking ring, as standard.

On the AC version, however, the boot override can be ordered by entering the code **CM** in the identification code at par. 1, or is available as option to be ordered separately: code **3401210001.**

11.2 - Knob manual override

Available only for DC version

When the set screw is screwed and its point is aligned with the edge of the knob, tighten the knob till it touches the spool: in this position the override is not engaged and the valve is de-energized. After adjusting the override, tighten the set screw in order to avoid the knob loosing.

Spanner: 2.5 mm

The knob override can be ordered by entering the code **CK** in the identification code at par. 1, or is available as option to be ordered separately: code **3401210002**.

12 - ELECTRIC CONNECTIONS

connection for DIN 43650 connector type code **K1** (standard)

outgoing cable connections code **K4**

connection for AMP SUPER SEAL (two contacts) connector type code **K8**

connection for AMP JUNIOR connector type code $\ensuremath{\textbf{K2}}$

connection for DEUTSCH DT04-2P for male connector type DEUTSCH DT06-2S code **K7**

13 - ELECTRIC CONNECTORS

The solenoid operated valves are delivered without connector. For coils with standard electrical connections K1 type (DIN 43650) the connectors can be ordered separately. For the identification of the connector type to be ordered please see cat. 49 000. For K2, K7 and K8 connection type the relative connectors are not available.

14 - SPARE PARTS FOR DC SOLENOID VALVE

15 - SPARE PARTS FOR AC SOLENOID VALVE

16 - FASTENING BOLTS AND SEALING RINGS

Single valve fastening: 4 SHC screws M5x30 - ISO 4762

Tightening torque: 5 Nm

Threads of mounting holes: M5x10

Sealing rings: N. 4 OR type 2037 (9.25x1.78) - 90 Shore

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com **17 - SUBPLATES** (See catalogue 51 000)

Type PMMD-AI3G with rear ports
Type PMMD-AL3G with side ports
P, T, A, B port threading: 3/8Ž BSP

41 220/112 ED

MOUNTING INTERFACE

PERFORMANCES (with mineral oil of viscosity of 36 cSt at 50°C)

•		,	
Maximum operating pressure: - ports P - A - B - port T	bar	280 210	
Maximum flow rate	l/min	50	
Pressure drop p-Q	see	paragraph 4	
Operating limits	see	paragraph 5	
Electrical features	see paragraph 7		
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	according cla	to ISO 4406:1999 ss 20/18/15	
Recommended viscosity	cSt	25	
Mass: single solenoid valve double solenoid valve	kg	1,5 2	

DL3B 8 WATT SOLENOID OPERATED DIRECTIONAL CONTROL VALVE SERIES 10

SUBPLATE MOUNTING ISO 4401-03 (CETOP 03)

p max **280** bar

Q max 60 l/min

OPERATING PRINCIPLE

- " 8 watt direct acting, subplate mounting directional control valve, with mounting surface according to ISO 4401-03 (CETOP RP 121H) standards.
- ", Compact design with reduced solenoid dimensions, suitable for mini-power packs and mobile and agricultural applications.
- " The valve body is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop. Wet armature
 - solenoids with interchangeable coils are used (for further information on solenoids see paragraph 7).
 - " The valve is supplied with 4 way designs and with several interchangeable spools with different porting arrangements.
 - ", The valve is available with DC current solenoids with 24 V power supply.

1 - IDENTIFICATION CODE

D L 3 B - / 10	0 - D24 K1
Solenoid operated directional control valve	
Compact version	Coil electrical connection: plug for connector type DIN 43650 (standard)
ISO 4401-03 (CETOP 03) size	
Spool type (see paragraph 3): S* TA SA* TB SB* RK Series N. (the overall and mounting dimensions remain unchanged from 10 to 19)	DC power supply 24 V
Seals: N = NBR seals for mineral oil (standard) V = FPM seals for special fluids	

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

DL3B SERIES 10

3 - SPOOL TYPE

4 - PRESSURE DROPS p-Q (obtained with viscosity of 36 cSt at 50 °C)

ENERGIZED VALVE

	FL	FLOW DIRECTIONS				
SPOOL	ΡA	ΡВ	ΑT	ВT		
	CU	RVES (ON GRA	PH		
S1	2	3	3	2		
S2	1	1	1	1		
S3	3	3	1	1		
S4	4	4	4	4		
RK	3	3	3	3		
TA, TB	3	3	3	3		
TA02, TB02	1	1	1	1		

For the pressure drop with a de-energized valve P T of the spools S2 and S4 refer to the curve 3; for the spool S4 refer to the curve 4.

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

The limits for TA02 and TA spools refer to the 4-way operation. The operating limits of a 4-way valve in 3-way operation or with port A or B plugged or without flow are shown in the chart on the next page.

SPOOL	CURVE
S1	1
S2	1
S3	3
S4	4
TA, TB	5
TA02, TB02	2
RK	6

TIMES (±10%) [ms]				
ENERGIZING	DE-ENERGIZING			
25 ÷ 75	15 ÷ 25			

6 - SWITCHING TIMES

The values indicated are obtained with spool S1, according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

7 - ELECTRICAL FEATURES

7.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated 360° , to suit the available space.

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	7.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95 EC
CLASS OF PROTECTION : Atmospheric agents CEI EN 60529 Coil insulation (VDE 0580) Impregnation	IP 65 (NOTE) class H class F

NOTE: The IP65 protection degree is guaranteed only with the connector correctly connected and installed.

7.2 - Current and absorbed power for solenoid valve

The table shows current and power consumption values relevant to the 24 VDC coil.

Coil for direct current (values ±5%)

	Nominal voltage [V]	Resistance at 20°C []	Current consumpt. [A]	Power consumpt [W]	Coil code
D24	24	64.6	0.37	8.92	1903291

8 - ELECTRIC CONNECTORS

The solenoid valves are not supplied with connector. Connectors must be ordered separately. For the identification of the connector type to be ordered, please see catalogue 49 000.

9 - DL3B OVERALL AND MOUNTING DIMENSIONS

10 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal.

Valve fitting takes place by means of screws or tie rods, fixing the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

11 - SPARE PARTS FOR SOLENOID VALVE

12 - VALVE FASTENING BOLTS

4 fastening bolts SHC M5x30 - ISO 4762 Tightening torque 5 Nm (bolts A 8.8) 13 - SUBPLATES (see catalogue 51 000)

Type PMMD-AI3G with rear ports 3/8Ž BSP

Type PMMD-AL3G with side ports 3/8Ž BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

MDS3 SOLENOID OPERATED SWITCHING VALVE **SERIES 10**

MODULAR VERSION ISO 4401-03 (CETOP 03)

p max 350 bar

Q max 50 l/min

MOUNTING INTERFACE

PERFORMANCES (obtained with mineral oil with viscosity of 36 cSt at 50°C)

Max operating pressure: P - A - B ports 350 bar T port (DC version) 210 T port (AC version) 140 Maximum flow on P - A - B ports l/min 50 °C -20 / +50 Ambient temperature range °C -20 / +80 Fluid temperature range Fluid viscosity range cSt 10 ÷ 400 Fluid contamination degree According to ISO 4406:1999 class 20/18/15 Recommended viscositv cSt 25 Mass: double solenoid 2 kg single solenoid 1,5

OPERATING PRINCIPLE

- " The MDS3 valve is used to switch multiple flow directions, or to select pressure values. Application examples can be seen at paragraph 15.
- " The oil passage holes pass right through the entire valve body and due to this particular design feature, the MDS3 can be assembled with all ISO 4401-03 (CETOP 03) modular valves).
- " The special connection of the valve in parallel to the P T - A - B lines of the circuit allows easy construction of differents hydraulic configurations, reducing pressure drops to a minimum.
- " Soft-shift feature available for some DC versions.

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic "uids HL or HM type, according to ISO 6743-4. For these "uids, use NBR seals (code N). For "uid s HFDR type (phosphate esters) use FPM seals (code V). For the use of other "uid types such as HFA, HFB, HFC, please consult our technical department.

Using "uids at temperatures higher than 80 °C causes a faster degradation of the "uid and of the seals characteristics. The "ui d must be preserved in its physical and chemical characteristics.

D

3 - SPOOL TYPE

4 - SOFT SHIFT

At now the soft shift feature is available only on DC valves with S12, SA12 and SB12 spools.

This feature enables hydraulic actuators to perform a smooth start and stop by reducing the speed of movement of the valve spool. The shifting time and characteristics curves, are influenced by the viscosity (and thus by the temperature) of the operating fluid. Moreover, times can vary according to the flow rate and operating pressure values of the valve.

For the correct work of the soft-shift device, ensure that the solenoid tubes are always filled with oil. For this purpose, we recommend to install a backpressure valve set at $1 \div 2$ bar on T line.

5 - PRESSURE DROPS p-Q

6 - OPERATING LIMITS

SOON AVAILABLE

7 - SWITCHING TIMES

SOON AVAILABLE

8 - ELECTRICAL FEATURES

8.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated to suit the available space.

Protection from atmospheric agents CEI EN 60529

Connector	IP 65	IP 67	IP 69 K
K1 DIN 43650	x (*)		
K7 DEUTSCH DT04 male	x	x	x (*)
K12 DUAL DIN 43650	x	x (*)	

(*) The protection degree is guaranteed only with the connector correctly connected and installed

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY DC valve AC valve	18.000 ins/hr 10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE)	In compliance with 2004/108/CE
LOW VOLTAGE	In compliance with 2006/95 CE
CLASS OF PROTECTION : Coil insulation (VDE 0580) Impregnation	class H class F

NOTE: In order to further reduce the emissions is recommended the use of type H connectors. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

8.2 Current and absorbed power for DC solenoid valve

The table shows current and power consumption values relevant to the different coil types

The recti"ed current supply takes place by "tting the valve (with the exception of D12 coil) with an alternating current source (50 or 60 Hz), recti"ed by means of a bridge built-in to the •DŽ type connectors (see cat. 49 000), by considering a reduction of the operating limits.

Available DC coils (values ±5%)

	Nominal voltage	Resistance at 20°C	Current consumpt.	Power consumpt	Coil	code
	[V]	[]	[A]	[W]	K1	K7
D12	12	4,4	2,72	32,6	1903080	1902940
D24	24	18,6	1,29	31	1903081	1902941
D28	28	26	1,11	31	1903082	
D48	48	78,6	0,61	29,3	1903083	
D110	110	423	0,26	28,6	1903084	
D220	220	1692	0,13	28,6	1903085	

8.3 Current and absorbed power for AC solenoid valve

The table shows current and power consumption values at inrush and at holding, relevant to the different coil types for AC current.

Available AC coils (values ± 5%)

Suffix	Nominal Voltage [V]	Freq. [Hz]	Resistance at 20°C [] (±1%)	Current consumption at inrush [A]	Current consumption at holding [A]	Power consumption at inrush [VA]	Power consumption at holding [VA]	Coil Code K1 and K12
A24	24	50	0.88	8.7	2.35	209	56.5	1902660
A48	48	00	3.2	4.5	1.25	216	60	1902661
A110	110V-50Hz		17.5	1.9	0.48	209	52.8	1002677
ATTO	120V-60Hz	50/60	17.5	1.8	0.45	216	54	1902077
A 220	220V-50Hz	50/60	70	0.95	0.23	200	50.6	1002679
A220	240V-60Hz		70	0.87	0.21	209	50.4	1902070
F110	110	60	15	2	0.5	220	55	1902680
F220	220	00	60	1	0.26	220	57.2	1902681

9 - DC VALVE - OVERALL AND MOUNTING DIMENSIONS

10 - AC VALVE - OVERALL AND MOUNTING DIMENSIONS

11 - INSTALLATION

The valve can be mounted in any position. Valve fixing takes place by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity and/or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

12 - ELECTRIC CONNECTORS

The solenoid operated valves are delivered without connector, except the version K12, where the connector is delivered together with the valve. For coils with standard electrical connections K1 type (DIN 43650) the connectors can be ordered separately. For the identification of the connector type to be ordered please see cat. 49 000.

For the K7 connections the relative connectors are not available.

13 - ELECTRIC CONNECTIONS

connection for DIN 43650 connector type code **K1** (standard)

connection for DEUTSCH DT04-2P male

line

coi center 13.1

connection for DUAL DIN 43650 connector type code **K12**

CONNECTOR M12x1 CONNECTION SCHEME

In K12 version the valve will be delivered together with the connector DUAL DIN 43650 with M12 connection already mounted on K1 coils. DUAL DIN connector allows you to power two solenoids with a single cable with socket M12.

(3 | B

NOTE: The mere connector type K12 (DUAL DIN) spare part can be ordered with the code 0672136.

14 - MANUAL OVERRIDES

connector type code **K7**

44 5

The standard valve has solenoids whose pin for the manual operation is integrated in the tube. The operation of this control must be executed with a suitable tool, minding not to damage the sliding surface.

Three different manual override version are available upon request:

- CM: manual override boot protected
- CP: Push manual override (for DC valves only)

- CPK: Push manual override with mechanical retention (for DC valves only)

15 - APPLICATION EXAMPLES

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

MDF3 SHUT-OFF SOLENOID VALVE SERIES 10

MODULAR VERSION ISO 4401-03 (CETOP 03)

p max 350 bar

Q max 50 l/min

MOUNTING INTERFACE

SPOOL TYPE (see hydraulic symbols table)

Type •A \check{Z} : it is used to unload the lines, with the valve at rest. Type •C \check{Z} : it is used to block the lines, with the valve at rest.

OPERATING PRINCIPLE

- ... Shut-off solenoid valve, direct-acting, available in two versions at rest: with lines blocked and with unloading lines.
- ... It is normally used with directional control servovalves to guarantee the circuit•s safety if there is a power failure.
- ... Wet armature solenoids with interchangeable coils are used (for further information see par. 6).

PERFORMANCE RATINGS (working with	mineral oil of viscosit	y of 36 cSt at 50°C)	
Maximum operating pressure	bar	350	
Maximum flow rate	l/min	50	
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25	
Mass	kg	1,5	

HYDRAULIC SYMBOLS

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - PRESSURE DROPS p-Q (obtained with viscosity 36 cSt at 50 °C)

4 - SWITCHING TIMES

The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50 $^{\circ}$ C.

TIMES				
ENERGIZING	DE-ENERGIZING			
60 ÷ 90 ms	20 ÷ 50 ms			
5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage.

The values have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/15.

6 - ELECTRICAL FEATURES

6.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated, to suit the available space.

NOTE 1: In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

NOTE 2: The IP65 protection degree is guaranteed only with the connector correctly connected and installed.

- Curve related to the de-energizing of the solenoid valve Curve related to the energizing of the solenoid valve, without any flow in A and B lines
- Curve related to the energizing of the solenoid valve, with flow in A and B lines

VOLTAGE SUPPLY FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	18.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 1)	In compliance with 2004/108/CE
LOW VOLTAGE	In compliance with 2006/95/CE
CLASS OF PROTECTION: Atmospheric agents (CEI EN 60529) Coil insulation (VDE 0580) Impregnation	IP 65 (NOTE 2) class H class F

6.2 - Current and absorbed power

The table shows current and power consumption values relevant to the different coil types for DC.

The rectified current supply takes place by fitting the valve (with the exception of D12 coil) with an alternating current source (50 or 60 Hz), rectified by means of a bridge builtin to the \bullet DŽ type connectors (see cat. 49 000), by considering a reduction of the operating limits of about 5-10%.

Coils for direct current (values ± 5%)

Suffix	Nominal voltage [V]	Resistance at 20°C []	Current consumpt. [A]	Power consumpt. [W]	Coil code
D12	12	4,4	2,72	32,6	1903080
D24	24	18,6	1,29	31	1903081
D48	48	78,6	0,61	29,3	1903083
D110	110	423	0,26	28,6	1903084
D220	220	1692	0,13	28,6	1903085

7 - ELECTRIC CONNECTORS

The solenoid operated valves are delivered without the connectors. They must be ordered separately. For the identification of the connector type to be ordered, please see catalogue 49 000.

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

MOUNTING INTERFACE

PERFORMANCE RATINGS (with mineral oil of viscosity of 36 cSt at 50°C)

		DC	AC
Maximum operating pressure			
P - A - B ports	bar	32	20
T port - standard version T port - version with Y port (ext.drain)		210 320	140
Maximum flow rate	l/min	150	120
Pressure drops p-Q		see paragraph 4	
Operating limits		see paragraph 6	
Electrical features		see paragraph 7	
Electrical connections		see paragraph 11	
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree		according to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25	
Mass: single solenoid valve double solenoid valve	kg	4,5 6,1	3,6 4,3

DS5 SOLENOID OPERATED DIRECTIONAL CONTROL VALVE SERIES 12

SUBPLATE MOUNTING ISO 4401-05 (CETOP 05)

p max 320 bar Q max 150 l/min

OPERATING PRINCIPLE

- ", Direct acting, subplate mounting directional control valve, with mounting surface according to ISO 4401 (CETOP RP121H).
- ", The valve is supplied with 3 or 4 way designs and with several interchangeable spools with different porting arrangements.
 - ", The valve body is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop. Wet armature solenoids with interchangeable coils are used (see paragraph 7).
 - ", The valve is available with DC or AC solenoids. DC solenoids can also be fed with AC power supply, by using connectors with a built-in rectifier bridge (see paragraph 7.2).
 - " The DC solenoids DS5 directional valve is available in the following special versions:
 - version with Y external subplate drain port, (see paragraph 14.1).
 - version with soft-shifting (see paragraph 14.4)
 - version with adjustable •soft-shiftŽ device (see paragraph 14.5)

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - SPOOL TYPE

2 solenoids - 2 positions with mechanical retention

Туре **ТВ**:

1 solenoid side B 2 external positions with return spring

Besides the diagrams shown, which are the most frequently used, other special versions are available: consult our technical department for their identification, feasibility and operating limits.

4 - PRESSURE DROPS p-Q (obtained with viscosity 36 cSt at 50 °C)

PRESSURE DROPS WITH VALVE ENERGIZED

	FLOW DIRECTION			
SPOOL TYPE	P-A	P-B	A-T	B-T
	CI	URVES	ON GRAF	'nН
S1, SA1, SB1	2	2	1	1
S2, SA2, SB2	3	3	1	1
S3, SA3, SB3	3	3	2	2
S4, SA4, SB4	1	1	2	2
S5	2	1	1	1
S6, S11	3	3	2	2
S7, S8	1	1	2	2
S9	3	3	2	2
S10	1	1	1	1
S12	2	2	1	1
S17, S19	2	2	1	1
S18	1	2	1	1
S20, S21				
S22, S23				
TA, TB	3	3	2	2
TA02, TB02	3	3	2	2
TA23, TB23	4	4		
RK	3	3	2	2
RK02	3	3	2	2
RK1, 1RK	3	3	2	2

PRESSURE DROPS WITH VALVE IN DE-ENERGIZED POSITION

		FLO	W DIREC	TION	
SPOOL TYPE	P-A	P-B	A-T	B-T	P-T
		CURV	ES ON G	RAPH	
S2, SA2, SB2					5
S3, SA3, SB3			6	6	
S4, SA4, SB4					5
S5		3			
S6				6	
S7					5
S8					5
S10	3	3			
S11			6		
S18	3				
S22					
S23					

5 - SWITCHING TIMES

The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

	TIMES [ms]		
COLTIPE	ENERGIZING	-ENERGIZING	
DC	100 ÷ 150 ms	20 ÷ 50 ms	
AC	15 ÷ 30 ms	20 ÷ 50 ms	

6 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions.

The values have been obtained according to ISO 64003 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage.

The values have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

SPOOL TYPE	CURVE	
	P-A	P-B
S1,SA1,SB1	1	1
S2, SA2, SB2	1	1
S3, SA3, SB3	2	2
S4, SA4, SB4	3	3
S5	1	1
S6	2	1
S7	3	3
S8	3	3
S9	1	1
S10	1	1
S11	1	2
S12	1	1

SPOOL TYPE	CURVE	
	P-A	P-B
S17	1	4
S18	1	1
S19	4	1
S20		
S21		
S22		
S23		
TA, TB	5	5
TA02, TB02	4	4
TA23, TB23	1	1
RK	1	1
RK02	1	1
RK1, 1RK	1	1

SPOOL TYPE	CURVE	
	P-A	P-B
S1,SA1,SB1	1	1
S2, SA2, SB2	2	2
S3, SA3, SB3	2	2
S4, SA4, SB4	4	4
S5	1	1
S6	2	1
S7	3	3
S8	3	3
S9	2	2
S10	1	1
S11	1	2
S12	1	1
S12	1	1

SPOOL TYPE	CU	RVE
	P-A	P-B
S17	1	5
S18	1	1
S19	5	1
S20		
S21		
S22		
S23		
TA, TB	1	1
TA02, TB02	5	5
TA23, TB23	1	1
RK	1	1
RK02	1	1
RK1, 1RK	1	1

NOTE:

The values indicated in the graphs are relevant to the standard solenoid valve. The operating limits can be considerably reduced if a 4-way valve is used as 3-way valve with port A or B plugged or without flow.

For flow and pressure performances of soft-shifting configuration (options F) see par. 14.4

Flow and pressure performances of adjustable soft-shifting device configurations (options S) are influenced by the set shifting time.

7 - ELECTRICAL FEATURES

7.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated, to suit the available space.

Protection from atmospheric agents CEI EN 60529

Plug-in type	IP 65	IP 67	IP 69 K
K1 DIN 43650	x (*)		
K2 AMP JUNIOR	х	x (*)	
K7 DEUTSCH DT04 male	х	х	x (*)

(*) The protection degree is guaranteed only with the connector correctly connected and installed

VOLTAGE SUPPLY FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	15.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 1)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95/EC
CLASS OF PROTECTION: Coil insulation (VDE 0580) Impregnation:	class H class F

NOTE 1: In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see CAT. 49 000).

7.2 Current and absorbed power for DC solenoid valve

The table shows current and power consumption values relevant to the different coil types for DC.

The rectified current supply takes place by fitting the valve with an alternating current source (50 or 60 Hz), rectified by means of a bridge built-in to the $\bullet D\tilde{Z}$ type connectors (see cat. 49 000).

However, when supplying the valve with rectified current, it is necessary to consider a reduction of the operating limits by 15-20% approx.

Coils for direct current (values ± 5%)

Suffix	Nominal voltage [V]	Resistance at 20°C []	Current consumpt. [A]	Power consumpt . [W]	K1	Coil code K2	К7
D12	12	3,2	3,75	45	1903200	1903210	1903220
D24	24	12	2	48	1903201	1903211	1903221
D28	28	16,2	1,72	48	1903202		
D48	48	49	0,98	47	1903203		
D110	110	250	0,44	48	1903204		
D220	220	1050	0,21	47	1903205		

7.3 Current and absorbed power for AC solenoid valve

The table shows current and power consumption values at inrush and at holding, relevant to the different coil types for AC current.

Suffix	Nominal voltage [V]	Frequency [Hz]	Resistance at 20°C [ohm]	Current consumption at inrush [A]	Current consumption at holding [A]	Power consumption at inrush [VA]	Power consumption at holding [VA]	Coil code
A24	24	50	0,53	25	3,96	600	95	1902890
A48	48	50	2,09	12,5	2,3	600	110	1902891
A110	110V-50Hz		10,9	5,2	0,96	572	105	1002802
ATTU	120V-60Hz	50/60	10,9	5,2	0,89	572	105	1902692
4000	230V-50Hz	50/60	52,7	2,8	0,46	644	105	1002002
A230	240V-60Hz		52,7	2,8	0,38	644	105	1902093
F110	110	<u> </u>	8,80	5,2	0,95	572	105	1902894
F220	220	00	35,2	2,7	0,48	594	105	1902895

9 - OVERALL AND MOUNTING DIMENSIONS FOR AC SOLENOID VALVES

10 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal. Valve fixing is by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity and/or smoothness are not met, fluid leakage between valve and mounting surface can easily occur.

11 - ELECTRIC CONNECTIONS

connection for DIN 43650 connector type code **K1** (standard)

connection for AMP JUNIOR connector type code **K2**

connection for DEUTSCH DT06-2S male connector type code **K7**

12 - ELECTRIC CONNECTORS

The solenoid operated valves are delivered without connectors. For coils with standard electrical connections K1 type (DIN 43650) the connectors can be ordered separately. For the identification of the connector type to be ordered please see cat. 49 000. For K2 and K7 connection type the related connectors are not available.

13 - MANUAL OVERRIDES FOR DC SOLENOID VALVES

13.1 - CM - Manual override, boot protected

13.2 - CK-DS5/10 Knob manual override

When the set screw is screwed and its point is aligned with the edge of the knob, tighten the knob till it touches the spool: in this position the override is not engaged and the valve is de-energized. After adjusting the override, tighten the set screw in order to avoid the knob loosing.

Spanner: 3 mm

Code: 3401150009

14 - SPECIAL VERSIONS FOR DC SOLENOID VALVE

14.1 - Identification code for external drain version

14.2 - Subplate external drain port (option Y)

This version allows the operation with pressures up to 320 bar on the valve T port.

It is a drain port Y realized on the valve mounting interface in compliance with ISO 4401-05-05-0-05 (CETOP 4.2-4-R05). The Y port is connected with the solenoid chamber: in this way the tubes are not stressed by the pressure operating on the valve T port.

14.3- Identification code for soft-shifting versions

14.4 - Fixed restrictor for soft-shifting (option F)

This version enables hydraulic actuators to perform a smooth start and stop by reducing the speed of movement of the valve spool.

The diagram on the side shows the operating limits of the spools available in the soft-shifting version (**NOTE**: for this version, the S9 spool must be used instead of the S3 one). The table on the side shows the switching times. The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

The shifting time and characteristics curves are influenced by the viscosity (and thus by the temperature) of the operating fluid. Moreover, times can vary according to the flow rate and operating pressure values of the valve.

SPOOL TYPE	CURVE		TIMES		
	P-A	P-B	ENERGIZING	DE-ENERGIZING	
S1, S12	1	1	300 ÷ 500	300 ÷ 500	
S2	2	2	450	200 ÷ 300	
S4, S7, S8	3	3	400	400 ÷ 200	
S9	1	1	300 ÷ 500	300 ÷ 500	
TA, TB	2	2	300 ÷ 400	300 ÷ 400	
TA02, TB02	2	2	400	200 ÷ 300	

14.5 - Directional solenoid valve with adjustable •soft-shiftingŽ device (option S)

This solenoid valve is supplied with a suitable device, adjustable by the user, which enables the control of the valve spool shifting time. In this way the hydraulic actuators can perform smooth movements, by controlling the valve switching time according to the machine cycle and the inertia of the moving parts.

NOTE: during the first start-up the valve body must be filled with the operating fluid through the tap (1).

15 - SPARE PARTS FOR DC SOLENOID VALVE

16 - SPARE PARTS FOR AC SOLENOID VALVE

17 - FASTENING BOLTS

4 bolts SHC M6x40 Tightening torque 8 Nm

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

18 - SUBPLATES (See catalogue 51 000)

Type PMD4-Al4G with rear ports 1/2Ž BSP Type PMD4-AL4G with side ports 1/2Ž BSP

MOUNTING INTERFACE

PERFORMANCES (with mineral oil of viscosity of 36 cSt at 50°C)

Maximum operating pressure:		CC	CA		
- ports P - A - B	bar	320			
- port T		210	160		
Maximum flow rate	l/min	125	100		
Pressure drop p-Q	see	see paragraph 4			
Operating limits	see	paragraph 5			
Electrical features	see paragraph 7				
Electrical connections	C	DIN 43650			
Ambient temperature range	°C	-20 / +50			
Fluid temperature range	°C	-20 / +80			
Fluid viscosity range	cSt 10 ÷ 400				
Fluid contamination degree	according to ISO 4406:1999 class 20/18/15				
Recommended viscosity	ended viscosity cSt 25				
Masse: single solenoid valve	ka	2	,8		
double solenoid valve	ĸġ	3,7			

DL5 SOLENOID OPERATED DIRECTIONAL CONTROL VALVE COMPACT VERSION SERIES 10

SUBPLATE MOUNTING ISO 4401-05 (CETOP 05)

p max 320 barQ max 125 l/min

OPERATING PRINCIPLE

- ", Direct acting, subplate mounting directional control valve, with mounting surface according to ISO 4401 (CETOP RP 121H) standards.
- " The valve is suitable for special applications, guaranteed by the reduced solenoid dimensions.

", The valve body is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop. Wet armature solenoids with interchangeable coils are used

(for further information on solenoids see paragraph 7).

", The valve is supplied with 3 or 4 way designs and with several interchangeable spools with different porting arrangements.

" The valve is available with DC or AC current solenoids.

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - SPOOL TYPE

4 - PRESSURE DROPS p-Q (obtained with viscosity of 36 cSt at 50 °C)

ENERGIZED VALVE

	FLOW DIRECTIONS					
SPOOL	ΡA	ΡВ	ΑT	ΒT		
	CUF	RVES O	N GRAI	PHS		
S1	1	1	2	2		
S2	1	1	1	1		
S3	1	1	1	1		
S4	4	4	4	4		
RK	2	2	2	2		
ТА	2	2	3	3		
TA02	2	2	1	1		
TA23	3	3	-	-		

DE-ENERGIZED VALVE

	FLOW DIRECTIONS				
SPOOL	ΑT	AT BT			
	CURVES ON GRAPHS				
S2	-	-	1		
S3	5	5	-		
S4	-	-	1		

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values indicated in the graphs are relevant to the standard solenoid valve. The operating limits can be considerably reduced if a 4-way valve is used as 3-way valve with port A or B plugged or without flow. The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

5.1 - Standard operating limits

SPOOL	CURVE
S1, S2, RK, TA, TA23	1
S9, TA02	2
S3	3
S4	4

SPOOL	CURVE
S1, RK, TA, TA02, TA23	1
\$2	2
S3, S9	3
S4	4

5.2 - 4-way valve in 3-way operation

Operating limits of a 4-way valve in 3-way operation or with port A or B plugged or without flow.

6 - SWITCHING TIMES

The values indicated are obtained with spool S1, according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

	TIMES (±10%) [ms]			
SUPPLY	ENERGIZING	DE-ENERGIZING		
DC	40 ÷ 90	20 ÷ 50		
AC	15 ÷ 30	20 ÷ 50		

L5

7 - ELECTRICAL FEATURES

7.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation. The coil is fastened to the tube by a threaded ring, and can be rotated +/- 90°, to suit the available space.

The interchangeability of coils of different voltages is allowed within the same type of supply current, alternating or direct.

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) - NOTE	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95/EC
CLASS OF PROTECTION : Atmospheric agents CEI EN 60529 Coil insulation (VDE 0580) Impregnation:	IP 65 (*) class H class H

(*) The protection degree is guaranteed only with the connector correctly connected and installed

NOTE: In order to further reduce the emissions, with DC supply, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

7.2 - DC valve - Current and power consumption

In direct current energizing, current consumption stays at fairly constant values, essentially determined by Ohm•s law: V = R x I

The table shows current and power consumption values for DC types.

	Resistance at 20°C	Current consumption	Power consumption	Coil code
	[](±5%)	[A] (±10%)	[W] (±10%)	K1
C22L5-D12K1	2,9	4,14	50	1903150
C22L5-D24K1	12,3	1,95	47	1903151
C22L5-D28K1	16,8	1,67	47	1903152

7.3 - AC valve - Current and power consumption

In alternating current energizing, an initial phase (maximum movement) is seen, during which the solenoid consumes elevated value currents (inrush current); the current values diminish during the plunger stroke until it reaches the minimum values (holding current) when the plunger reaches the stroke end.

The table shows the values of absorption at the inrush and at holding.

	Freq. [VAC/Hz] (±10%)	Resistance at 20°C [] (±5%)	Current consumption at inrush [A] (±10%)	Current consumption at holding [A] (±5%)	Power consumption at inrush (±10%) [VA]	Power consumption at holding (±10%) [VA]	Coil code K1
C26L5-A24K1/10	24/50	0,58	15,1	2,84	362,4	68,2	1931600
C26L5-A48K1/10	48/50	2,34	7,4	1,29	355,2	61,9	1931610
C26L5-A110K1/10	110/50-120/60	12,3	3,6 - 3,3	0,64 - 0,62	396	70,4 - 74,4	1931620
C26L5-A230K1/10	230/50-240/60	51,6	1,8 - 1,6	0,31 - 0,28	414 - 384	71,3 - 67,2	1931630

8 - ELECTRIC CONNECTORS

The solenoid valves are not supplied with connector. Connectors must be ordered separately. For the identification of the connector type to be ordered, please see catalogue 49 000.

9 - INSTALLATION

The configuration with centering and return springs can be mounted in any position.

Valve fitting takes place by means of screws or tie rods, fixing the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

10 - DL5 DC OVERALL AND MOUNTING DIMENSIONS

11 - DL5 AC OVERALL AND MOUNTING DIMENSIONS

12 - OPTIONAL MANUAL OVERRIDES

12.1 - Boot protected manual override (only for DC solenoid valve)
It can be ordered by entering the code CM in the identification code at par.
1, or is available as option to be ordered separately: code 3401150006.

12.2 - Knob manual override (only for DC solenoid valve)

When the set screw is screwed and its point is aligned with the edge of the knob, tighten the knob till it touches the spool: in this position the override is not engaged and the valve is de-energized. After adjusting the override, tighten the set screw in order to avoid the knob loosing.

Spanner: 3 mm

The knob override can be ordered by entering the code **CK** in the identification code at par. 1, or is available as option to be ordered separately: code **3401150009.**

13 - SPARE PARTS FOR DC SOLENOID VALVE

Cod. 1985447 NBR seals

Cod. 1985448 FPM seals

14 - SPARE PARTS FOR AC SOLENOID VALVE

15 - FASTENING BOLTS AND SEALING RINGS

Single valve fastening: 4 SHC screws ISO 4762 M6x35

Tightening torque: 8 Nm

Sealing rings: N. 5 OR type 2050 (12.42x1.78) - 90 Shore

Type PMD4-AI4G with rear ports - port threading: 3/4Ž BSP Type PMD4-AL4G with side ports - port threading: 1/2Ž BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

MOUNTING INTERFACE

PERFORMANCES (with mineral oil of viscosity of 36 cSt at 50°C)

Maximum operating pressure: - ports P - A - B - port T	bar	320 210		
Maximum flow rate	l/min	125		
Pressure drop p-Q	see pa	aragraph 4		
Operating limits	see pa	see paragraph 5		
Electrical features	see paragraph 7			
Electrical connections	see paragraph 8			
Ambient temperature range	°C -20 / +50			
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt	10 ÷ 400		
Fluid contamination degree	according to ISO 4406:1999 class 20/18/15			
Recommended viscosity	cSt	25		
Masse: single solenoid valve double solenoid valve	kg	2,4 3		

DL5B SOLENOID OPERATED DIRECTIONAL CONTROL VALVE COMPACT VERSION SERIES 10

SUBPLATE MOUNTING ISO 4401-05 (CETOP 05)

p max **320** bar

Q max 125 l/min

OPERATING PRINCIPLE

- ", Direct acting, subplate mounting directional control valve, with mounting surface according to ISO 4401 (CETOP RP 121H) standards.
- ", The valve is suitable for special applications, guaranteed by the reduced solenoid dimensions.

"The valve body is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop. Wet armature solenoids with interchangeable coils are used (for further information on solenoids see paragraph 7).

> ", The valve is supplied with 3 or 4 way designs and with several interchangeable spools with different porting arrangements.

" The valve is available with DC current solenoids only.

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - SPOOL TYPE

4 - PRESSURE DROPS p-Q (obtained with viscosity of 36 cSt at 50 °C)

ENERGIZED VALVE

	FLOW DIRECTIONS			
SPOOL	ΡA	ΡВ	ΑT	ВT
	CUF	RVES O	N GRAI	PHS
S1	1	1	2	2
S2	1	1	1	1
S3	1	1	1	1
S4	4	4	4	4
S9	1	1	1	1
RK	2	2	2	2
ТА	2	2	3	3
TA02	2	2	1	1
TA23	3	3	-	-

DE-ENERGIZED VALVE

	FLOW DIRECTIONS			
SPOOL	ΑT	ВT	ΡT	
	CURVES ON GRAPHS			
S2	-	-	1	
S3	5	5	-	
S4	-	-	1	

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

The limits for TA02 and TA spools refer to the 4-way operation. The operating limits of a 4-way valve in 3-way operation or with port A or B plugged or without flow are shown in the chart on the next page.

CURVE
1
2
3
4
5
6

5.1 - 4-way valve in 3-way operation

Operating limits of a 4-way valve in 3-way operation or with port A or B plugged or without flow.

SPOOL	CURVE
ТА	1
TA02	2

6 - SWITCHING TIMES

The values indicated are obtained with spool S1, according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

	TIMES (±10%) [ms]		
SUPPLY	ENERGIZING	DE-ENERGIZING	
DC	70 ÷ 100	15 ÷ 20	

7 - ELECTRICAL FEATURES

7.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation. The coil is fastened to the tube by a threaded ring, and can be rotated +/- 90°, to suit the available space

The coils are interchangeabile.

Protection from atmospheric agents CEI EN 60529

Plug-in type	IP 65	IP 67	IP 69 K
K1 DIN 43650	x (*)		
K2 AMP JUNIOR	х	x (*)	
K7 DEUTSCH DT04 male	х	х	x (*)

NOTE: In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC)	In compliance with 2004/108/CE
LOW VOLTAGE	In compliance with 2006/95 CE
CLASS OF PROTECTION : Coil insulation (VDE 0580) Impregnation:	class H class F

7.2 DC valve - Current and power consumption

In direct current energizing, current consumption stays at fairly constant values, essentially determined by Ohm•s law: V = R x I The table shows current and power consumption values for DC types.

	Resistance at 20°C	Current consumption	Power consumption		Coil code	
	[](±5%)	[A] (±10%)	[W] (±10%)	K1	K2	K7
C22S3-D12	4,4	2,72	32,7	1903080	1903100	1902940
C22S3-D24	18,6	1,29	31	1903081	1903101	1902941
C22S3-D28	26	1,11	31	1903082		-

8 - ELECTRIC CONNECTIONS

connection for DIN 43650 connector type code **K1** (standard)

connection for AMP JUNIOR connector type code $\ensuremath{\textbf{K2}}$

connection DEUTSCH DT04-2P for DEUTSCH DT06-2S male connector type code **K7**

9 - ELECTRIC CONNECTORS

The solenoid operated valves with K1 connection are not supplied with connector. Connectors must be ordered separately (see catalogue 49 000). K2 and K7 connectors are not available.

10 - DL5B DC OVERALL AND MOUNTING DIMENSIONS

11 - INSTALLATION

The configuration with centering and return springs can be mounted in any position.

Valve fitting takes place by means of screws or tie rods, fixing the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

12 - SPARE PARTS FOR DC SOLENOID VALVE

13 - FASTENING BOLTS AND SEALING RINGS

Single valve fastening: 4 SHC screws M6x35

Tightening torque: 8 Nm

Sealing rings: N. 5 OR type 2050 (12.42x1.78) - 90 Shore

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com 14 - SUBPLATES (See catalogue 51 000)

Type PMD4-AI4G with rear ports - threading: 3/4Ž BSP Type PMD4-AL4G with side ports - threading: 1/2Ž BSP

MOUNTING INTERFACE

CONFIGURATIONS (see Hydraulic symbols table)

- ", Type •SŽ: a 4-way, 3-position, 2-solenoid directional valve; positioning of the spool at rest is obtained by centering springs.
- ", Type •TA/TCŽ: a 4-way, 2-position, one solenoid directional valve; positioning of the spool at rest is obtained by a return spring.

PERFORMANCES	(obtained with mineral oil of	viscosity of 36 cSt at 50°C)
--------------	-------------------------------	------------------------------

Maximum operating pressure - ports P - A - B - port T	bar	280 140
Maximum flow rate on ports P - A - B - T	l/min	75
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	according to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass: DD44-S DD44-TA/TC	kg	4,5 3,6

DD44

SOLENOID OPERATED DIRECTIONAL CONTROL VALVE DIRECT CURRENT - SERIES 50 ALTERNATING CURRENT - SERIES 62

MODULAR VERSION ISO 4401-05 (CETOP 05)

p max 280 bar

Q max 75 l/min

OPERATING PRINCIPLE

- ", DD44 is used to switch multiple flow directions, or to select pressure values. Application examples can be seen in paragraph 11.
- ", The oil passage holes pass right through the entire valve body and due to this particular design feature, the DD44 can be assembled with all ISO 4401-05 (CETOP 05) modular valves.
- ", The special connection of the valve in parallel to the P, T, A and B lines of the circuit allows easy construction of different hydraulic configurations, reducing pressure drops to a minimum.

HYDRAULIC SYMBOLS

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - PRESSURE	DROPS	p-Q	(obtained with viscosity 36 cSt at 50 °C)
--------------	-------	-----	---

		CONNECTIONS				
SPOOL	POSITION	P→A	Р→В	A→T	B→T	
	FUSITION	CURVES ON GRAPH				
S1, 1TA, 1TC	Energized	1	1	2	2	
TA, TC	De-energized Energized	3	3	4	4	

4 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage.

The values have been obtained with mineral oil, viscosity 36 cSt, temperature 50°C and filtration according to ISO 4406:1999 class 18/16/13.

NOTE: The values indicated in the graphs are relevant to the standard solenoid valve. The operating limits can be considerably reduced if a 4-way valve is used as 3-way valve with port A or B plugged or without flow.

5 - SWITCHING TIMES

The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50° C.

SPOOL	TIMES				
TYPE	ENERGIZING	DE-ENERGIZING			
СС	60 ms	50 ms			
CA	15 ÷ 30 ms	20 ÷ 50 ms			

6 - ELECTRICAL FEATURES

to the different coil types for DC.

6.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated 360° , to suit the available space.

NOTE 1: In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see CAT. 49 000).

6.2 Current and absorbed power for DC solenoid valve

The table shows current and power consumption values relevant

VOLTAGE SUPPLY FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 1)	In compliance with 2004/108/CE
LOW VOLTAGE	In compliance with 2006/95/CE
CLASS OF PROTECTION: Atmospheric agents (CEI EN 60529) Coil insulation (VDE 0580) Impregnation:	IP 65 (NOTE 2) class H class F

NOTE 2: The IP65 protection degree is guaranteed only with the connector correctly connected and installed.

Coils for direct current (values ± 5%)

Nominal voltage [V]	Resistance at 20°C [ohm]	Current consumpt. [A]	Power consumpt. [W]	Code
12	3 - 3,4	3,7	44,4	1901691
24	12 - 14	1,83	43,9	1901692

6.3 Current and absorbed power for AC solenoid valve

The table shows current and power consumption values at inrush and at holding, relevant to the different coil types for AC current.

Coils for alternating current (values ± 5%)

Suffix	Nominal voltage [V]	Frequence [Hz]	Resistance at 20°C [ohm]	Current consumption at inrush [A]	Current consumption at holding [A]	Power consumption at inrush [VA]	Power consumption at holding [VA]	Coil code
A24	24	50	0,53	25	3,96	600	95	1902890
A48	48	50	2,09	12,5	2,3	600	110	1902891
A110	110V-50Hz		10,9	5,2	0,96	572	105	1002902
ATTU	120V-60Hz	50/00	10,9	5,2	0,89	572	105	1902692
4000	230V-50Hz	50/60	52,7	2,8	0,46	644	105	1002002
A230	240V-60Hz		52,7	2,8	0,38	644	105	1902093
F110	110	60	8,80	5,2	0,95	572	105	1902894
F220	220	00	35,2	2,7	0,48	594	105	1902895

7 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal. Valve fixing takes place by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity and/or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

8 - ELECTRIC CONNECTORS

The solenoid operated valves are delivered without the connectors. They must be ordered separately.

For the identification of the connector type to be ordered, please see catalogue 49 000.

9 - OVERALL AND MOUNTING DIMENSIONS OF DIRECT CURRENT SOLENOID VALVE

10 - OVERALL AND MOUNTING DIMENSIONS OF ALTERNATING CURRENT SOLENOID VALVE

11 - APPLICATION EXAMPLES

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

E*P4 PILOT OPERATED DISTRIBUTOR SOLENOID OR HYDRAULIC (C*P4) CONTROLLED

E4P4CETOP P05E4R4ISO 4401-05 (CETOP R05)E5ISO 4401-08 (CETOP 08)

p max (see table of performances)

Q max (see table of performances)

- ", The E*P4 piloted valves are constituted of a 4-way hydropiloted distributor with a mounting surface in accordance with the ISO 4401 (CETOP RP121H) standards, operated by a ISO 4401-03 (CETOP 03) solenoid directional valve.
- ", They are made in CETOP P05 and ISO 4401-05 (CETOP R05) sizes with flow rates up to 150 l/min, and in ISO 4401-08 (CETOP 08) size with flow rates up to 600 l/min.
- ", They are available with different spool types (see par. 2) and with some options for the opening control.
- ", They are available with both the solenoid and the hydraulic control from the X and Y ways.
- , A version for high pressures (H) is available.

PERFORMANCES (obtained with mineral oil of viscosity of 36 cSt at 50°C)	
---	--

		E4*4	E4HP4	E5P4	E5HP4
Maximum operating pressure - ports P - A - B - port T (external drainage) - port T (internal drainage)	bar	320 210 140	420 350 140	280 210 140	420 350 140
Maximum flow rate from port P to A - B - T	l/min	1:	50	6	00
Ambient temperature range	°C	-20 / +50			
Fluid temperature range	°C	-20 / +80			
Fluid viscosity range	cSt 10 ÷ 400				
Fluid contamination degree	according to ISO 4406:1999 class 20/18/15			'15	
Recommended viscosity	cSt 25				
Mass: E*P4-S, RK E*P4-TA/TC	kg	6	7 ,4	15	5,6 5,0

OPERATING PRINCIPLE

K1 Ρ Ε 4 Ι / Ι -Manual override: omit for override Directional valve, integrated in the solenoid controlled, tube (standard) pilot operated CM = manual override, boot protected Size: -**4** = CETOP P05 5 = ISO 4401-08 Coil electrical (CETOP 08) connection: plug for connector type DIN 43650 (standard) Option H = high pressure version DC power supply pmax = 420 bar**D12** = 12 V not available with S4 spool. **D24** = 24 V (Omit for standard version) **D48** = 48 V **D110** = 110 V D220 = 220 V **P** = Subplate mounting **D00** = valve without coils (see **NOTE**) R = Mounting interface AC power supply ISO 4401-05-05-0-05 (CETOP R05) A24 = 24 V - 50 Hz (not available for version H high pressure) A48 = 48 V - 50 Hz A110 = 110 V - 50 Hz / 120 V - 60 Hz A230 = 230 V - 50 Hz / 240 V - 60 Hz A00 = valve without coils (see NOTE) Number of ways **F110** = 110 V - 60 Hz F220 = 220 V - 60 Hz Spool type (see par. 3): -S* TA* *TA TC* Seals: *TC RK* N = NBR seals for mineral oils (standard) $\mathbf{V} = FPM$ seals for special fluids Options - see par. 12 (omit if not required): -**C** = main spool stroke control Series No.: **D** = main spool shifting speed control 50 - for valve E4 G = main spool stroke and shifting speed control 40 - for valve E5 PF = subplate with restrictor Ø0,8 on port P (the overall and mounting dimensions placed under solenoid valve within the same ten remain unchanged) Piloting: omit for internal piloting C3 = Check valve incorporated on line P E = external piloting Setting 5 bar - see paragraph 8.1 Mandatory for spools type: Option available only for E5 standard S2 - S4 - S7 - S8 - TA002 - TC002 - RK002. valve With these spools the internal piloting is possible only with E5 valve with C3 option. Drainage: I = internal drainage (omit for external drainage, which is recommended when the valve is used with backpressure on the outlet) NOTE: The locking rings of the coils and the relevant O-Rings are supplied together with valves

1 - IDENTIFICATION CODE FOR SOLENOID CONTROLLED DISTRIBUTOR

2 - SPOOL TYPE

Symbols are referred to the solenoid valve E*. For the hydraulic control version C* please verify the connection scheme (see par. 4).

Type S:

3 positions with spring centering

Type ***TA:** 2 positions (central + external) with spring centering A B 0 b b b

Type **TA:** 2 external positions with return spring

Type **23 (TA/TC)**: 3-way, 2 external positions with return spring

Type ***TC:** 2 positions (central + external) with spring centering

Type **RK:**

2 positions with mechanical detent on pilot valve

Besides the diagrams shown, which are the most frequently used, other special versions are available: consult our technical department for their identification, feasibility and operating limits.

3 - IDENTIFICATION CODE FOR HYDRAULIC CONTROLLED DISTRIBUTOR C*P4

4 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N for solenoid controlled distributors, omit for hydraulic controlled). For fluids HFDR type (phosphate esters) use FPM seals (code V).

For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

5 - PRESSURE DROPS p-Q (values obtained with viscosity 36 cSt at 50 °C)

5.1 - Pressure drops E4P4

		E4				
			со	NNECTIO	<u></u> NS	
SPOOL TYPE	SPOOL	ΡΑ	РВА	ΤВ	ТРТ	
	POSITION		CURVE	S ON G	RAPH	
S1	Energized	1	1	2	3	
S2	De-energized Energized	5	5	2	4	6*
S3	De-energized Energized	1	1	1 2	1° 4	
S4	De-energized Energized	6	6	3	5	6
S5	De-energized Energized	1	1 5	2	3	
S6	De-energized Energized	1	1	2	1 4	
S7	De-energized Energized	6	6	3	5	6°
S8	De-energized Energized	6	6	3	5	6
S9	Energized	1	1	2	2	
S10	De-energized Energized	1' 5	1° 5	2	3	
S11	De-energized Energized	1	1	1 2	3	
S18	De-energized Energized	5 5	1	2	3	
TA	De-energized Energized	1	1	4	3	
RK	Energized	1	1	4	3	

* A-B blocked B blocked ° A blocked

5.2 - Pressure drops E5P4

		E5					
			со	NNECTIO	ONS		
SPOOL TYPE	SPOOL	ΡA	РВА	ТВ	ТРТ		
	POSITION	CURVES ON GRAPH					
S1	Energized	1	1	2	3		
S2	De-energized Energized	2	2	1	2	6*	
S3	De-energized Energized	1	1	4 1	4° 2		
S4	De-energized Energized	6	6	3	4	5	
S5	De-energized Energized	1	4 2	2	3		
S6	De-energized Energized	1	1	2	4 2		
S7	De-energized Energized	6	6	3	4	5°	
S8	De-energized Energized	6	6	4	3	5	
S9	Energized	1	1	2	3		
S10	De-energized Energized	4 2	4° 2	2	3		
S11	De-energized Energized	1	1	3 1	3		
S18	De-energized Energized	4 2	1	2	3		
TA	De-energized Energized	1	1	2	3		
RK	Energized	1	1	2	3		

* A-B blocked B blocked ° A blocked

6 - SWITCHING TIMES

6.1 Switching times E4P4

The values indicated refer to a solenoid valve working with piloting pressure of 100 bar, with mineral oil at a temperature of 50°C, at viscosity of 36 cSt and with PA and BT connections.

The energizing and de-energizing times are obtained at the pressure variation which occurs on the lines.

E4						
TIMES (± 10%) [ms]	ENER	GIZED	DE-ENERGIZED			
	2 Pos.	3 Pos.	2 Pos.	3 Pos.		
CA solenoid	35	25	35	25		
DC solenoid	60	50	50	40		

6.2 Switching times E5P4

The values indicated refer to a solenoid valve working with piloting pressure of 100 bar, with mineral oil at a temperature of 50°C, at viscosity of 36 cSt and with PA and BT connections.

The energizing and de-energizing times are obtained at the pressure variation which occurs on the lines.

E5							
TIMES (± 10%)	ENER	GIZED	DE-ENERGIZED				
[ms]	2 Pos.	3 Pos.	2 Pos.	3 Pos.			
CA solenoid	70	40	70	40			
DC solenoid	100	70	80	50			

7 - PERFORMANCE CHARACTERISTICS

E4 - PRESSURES [bar]		E4*4	E4HP4	C4*4	C4HP4
	MIN	MAX			
Pressure in P, A, B ports		320	420	320	420
Piloting pressure (X port and / or Y port)	5	210	350	210	350
Pressure in T line with internal drainage	-	140	140	-	-
Pressure in T line with external drainage	-	210	350	210	350

E5 - PRESSURES [bar]		E5P4	E5HP4	C5P4	C5HP4
	MIN		M	٩X	
Pressure in P, A, B ports		280	420	280	420
Piloting pressure (X port and / or Y port)	5	210	350	210	350
Pressure in T line with internal drainage	-	140	140	-	-
Pressure in T line with external drainage	-	210	350	210	350

MAXIMUM FLOW RATES [I/min]	E	4	E	5
	PRESSURES			
Spool type	at 210 bar	at 320 bar	at 210 bar	at 280 bar
S4, S7, S8	120	100	500	450
All other spools	150	120	600	500

8 - PILOTING AND DRAINAGE

The E*P4 values are available with piloting and drainage, both internal and external.

The version with external drainage allows for a higher back pressure on the outlet.

E4P4

X: plug M5x6 for external pilot **Y**: plug M5x6 for external drain

X: plug M6x8 for external pilot

Y: plug M6x8 for external drain

			sembly
		Х	Y
E*P4-**	INTERNAL PILOT AND EXTERNAL DRAIN	NO	YES
E*P4-**/I	INTERNAL PILOT AND INTERNAL DRAIN	NO	NO
E*P4-**/ E	EXTERNAL PILOT AND EXTERNAL DRAIN	YES	YES
E*P4-**/ EI	EXTERNAL PILOT AND INTERNAL DRAIN	YES	NO

8.1 - Backpressure valve incorporated on line P available for E5 valve only)

Valve E5 is available upon request with backpressure valve incorporated on line P. This is necessary to obtain the piloting pressure when the control valve, in the rest position, has the line P connected to the T outlet (spools S2 - S4 - S7 - S8 - TA002 - TC002 - RK002). The cracking pressure is of 5 bar.

Add C3 to the identification code for this request (see paragraph 1). In the C3 version the piloting is always internal.

E5P4 (with C3 option)

pilot always internal Y: plug M6x8 for external drain

NOTE: the backpressure valve can•t be used as direct check valve because it doesn•t assure the seal.

The curve refers to the pressure drop (body part only) with backpressure valve energized to which the pressure drop of the reference spool must be added. (see paragraph 5)

9 - ELECTRICAL FEATURES

9.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated 360° , to suit the available space.

NOTE 1: In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see catalogue. 49 000).

NOTE 2: The IP65 protection degree is guaranteed only with the connector correctly connected and installed.

VOLTAGE SUPPLY FLUCTUATION	±10% Vnom
MAX SWITCH ON FREQUENCY E4 E5	10.000 ins/hr 8.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 1)	According to 2004/108/CE
LOW VOLTAGE	According to 2006/95/CE
CLASS OF PROTECTION: Atmospheric agents (CEI EN 60529) Coil insulation (VDE 0580)	IP 65 (NOTE 2) class H
AC valve	class F class H

Coils for direct current (values ± 5%)

9.2 Current and absort	ed power	for	DC	soleno	id
valve					

The table shows current and power consumption values relevant to the different coil types for DC.

The rectified current supply takes place by fitting the valve (with the exception of D12 coil) with an alternating current source (50 or 60 Hz), rectified by means of a bridge built-in to the $\bullet DZ$ type connectors (see cat. 49 000), by considering a reduction of the operating limits by 5 ÷ 10% approx.

Suffix	Nominal voltage [V]	Resistance at 20°C [ohm]	Current consumpt. [A]	Power consumpt. [W]	Coil code
D12	12	4,4	2,72	32,7	1903080
D24	24	18,6	1,29	31	1903081
D48	48	78,6	0,61	29,5	1903083
D110	110	423	0,26	28,2	1903084
D220	220	1692	0,13	28,2	1903085

9.3 Current and absorbed power for AC solenoid valve

The table shows current and power consumption values at inrush and at holding, relevant to the different coil types for AC current.

Suffix	Nominal voltage [V]	Frequency [Hz]	Resistance at 20°C []	Current consumption at inrush [A]	Current consumption at holding [A]	Power consumption at inrush [VA]	Power consumption at holding [VA]	Coil code
A24	24	50	1,46	8	2	192	48	1902830
A48	48	50	5,84	4,4	1,1	204	51	1902831
A110	110V-50Hz			1,84	0,46	192	48	4000000
ATTU	120V-60Hz	50/00	32	1,56	0,39	188	47	1902832
A 220	230V-50Hz	50/60	140	0,76	0,19	176	44	4000000
A230	240V-60Hz		140	0,6	0,15	144	36	1902833
F110	110	60	26	1,6	0,4	176	44	1902834
F220	220	00	106	0,8	0,2	180	45	1902835

Coils for alternating current (values ± 5%)

10 - E4 OVERALL AND MOUNTING DIMENSIONS

3

4

5

Connector removal space

Mounting surface with sealing rings

Electric connector to be ordered separately (see cat.49 000)

Threads of mounting holes: M6x10

Sealing rings: 5 OR type 2050 (12.42x1.78) - 90 Shore

2 OR type 2037 (9.25x1.78) - 90 Shore

11 - E5 OVERALL AND MOUNTING DIMENSIONS

Connector removal space

Mounting surface with sealing rings

Electric connector to be ordered separately (see cat.49 000)

4

5

Sealing rings: 4 OR type 3118 (29.82x2.62) - 90 Shore

2 OR type 3081 (20.24x2.62) - 90 Shore

12 - OPTIONS

12.1 Control of the main spool stroke: C

It is possible to introduce special stroke controls in the heads of the hydropiloted valve so as to vary the maximum spool clearance opening.

This solution allows control of the flow rate from the pump to the actuator and from the actuator to the outlet, obtaining a double adjustable control on the actuator.

Add the letter C to the identification code to request this device (see paragraph 1).

By placing a MERS type double flow control valve between the pilot solenoid valve and the hydropiloted valve, the piloted flow rate can be controlled and therefore the changeover smoothness can be varied.

Add the letter **D** to the identification code to request this device (see paragraph 1).

12.3 Subplate with throttle on line P

It is possible to introduce a subplate with a restrictor of \emptyset 0,8 on line P between the pilot solenoid valve and the main distributor.

Add **PF** to the identification code to request this option (see paragraph 1).

12.4 Control of the main spool stroke and shifting speed: G

It is possible to have the valve fitted with both the spool stroke device and the piloting flow rate control device.

Add the letter G to the identification code to request this solution (see paragraph 1).

dimensions in mm

	E4	E5
А	280	401,5
С	218	254

13 - MANUAL OVERRIDE, BOOT PROTECTED: CM

Whenever the solenoid valve installation may involve exposure to atmospheric agents or use in tropical climates, the manual override, boot protection is recommended.

Add the suffix **CM** to request this device (see paragraph 1).

For overall dimensions see cat. 41 150.

E*P4-S*/C

E*P4-S*/G

14 - ELECTRIC CONNECTORS

The solenoid valves are never supplied with connector. Connectors must be ordered separately.

To identify the connector type to be ordered, please see catalogue 49 000.

15 - INSTALLATION

Configurations with centering and recall springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal.

Valve fastening takes place by means of screws or tie rods, laying the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

NOTE: Use of class 12.9 fastening screws is recommended for valves in version H (high pressure).

16 - SUBPLATES (see catalogue 51 000)

These plates are for the standard valves only. They are not suitable for high pressure (H) versions.

	E4	E5
Type with rear ports	PME4-AI5G	
Type with side ports	PME4-AL5G	PME5-AL8G
P, T, A, B, port dimensions	3/4Ž	1½Ž BSP
X, Y port dimensions	1/4Ž BSP	1/4Ž BSP

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

DSP7 PILOT OPERATED DISTRIBUTOR SOLENOID OR HYDRAULIC (DSC7) CONTROLLED

SUBPLATE MOUNTING ISO 4401-07 (CETOP 07)

p max 350 barQ max 300 l/min

MOUNTING INTERFACE

- " The DSP7 piloted valve is made up of a 4-way hydropiloted distributor with mounting surface according to ISO 4401-07 (CETOP 07) (CETOP RP121H) standards, operated by an ISO 4401-03 (CETOP 03) solenoid directional valve.
- " It is available with different spool types (see par. 2), with some options for the opening control.
- " It is available with both the solenoid and the hydraulic control from the X and Y ways
- " A version for high pressures (H) is available.

		DSP7	DSP7H	
Maximum operating pressure - ports P - A - B - port T (external drainage) - port T (internal drainage)	bar	350 420 210 350 140 140		
Maximum flow rate from port P to A - B - T	l/min	300		
Ambient temperature range	°C	-20 / +50		
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt 10 ÷ 400			
Fluid contamination degree	according to ISO 4406:1999 class 20/18/15			
Recommended viscosity	cSt 25			
Mass: DSP7-S, RK DSP7-T*, SA*, SB* DSC7	kg	8,6 8,0 6,6		

PERFORMANCES (obtained with mineral oil of viscosity of 36 cSt at 50°C)

٦

1 - IDENTIFICATION CODE FOR SOLENOID DISTRIBUTOR DSP7

	/ K1 /
Directional valve, - Solenoid controlled, Pilot operated Size:	/ / / / / /
S* TA SA* TB SB* RK	DC power supply
Series: (the overall and mounting dimensions remain unchanged from 20 to 29) Seals:	D12 = 12 V D24 = 24 V D48 = 48 V D110 = 110 V D220 = 220 V D00 = valve without coils (see NOTE)
 N = NBR seals for mineral oil (standard) V = FPM seals for special fluids 	AC power supply $A24 = 24 \vee -50 \text{ Hz}$ $A48 = 48 \vee -50 \text{ Hz}$
 Piloting (see paragraph 9):	A110 = 110 V - 50 Hz / 120 V - 60 Hz A230 = 230 V - 50 Hz / 240 V - 60 Hz A00 = valve without coils (see NOTE) F110 = 110 V - 60 Hz F220 = 220 V - 60 Hz
Drainage (see paragraph 9): I = Internal E = External	
 Controls: C = Main spool stroke control (see paragraph 13.1) D = Main spool switching speed control (see paragraph 13.2) P08 = Subplate placed under solenoid valve with restrictor of Ø0.8 on port P (see paragraph 13.3) S2 = Distributor delivered with pilot solenoid valve in configuration S2 (see paragraph 13.4) 	
NOTE: The locking rings of the coils and the relevant O-Rings are supplied together with va	alves

2 - SPOOL TYPE

consult our technical department for their identification, feasibility and operating limits.

3 - IDENTIFICATION CODE FOR HYDRAULIC DISTRIBUTOR DSC7

4 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V).

For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

5 - PRESSURE DROPS p-Q (values obtained with viscosity 36 cSt at 50 °C)

PRESSURE DROPS WITH VALVE ENERGIZED

	FL	OW DIREC	TION	
SPOOL TYPE	P-A	P-B	A-T	B-T
	CUF	RVES ON G	RAPH	
S1, SA1, SB1	1	1	3	4
S2, SA2, SB2	1	1	4	4
S3, SA3, SB3	1	1	4	4
S4, SA4, SB4	2	2	4	5
S6	1	1	3	4
S7	1	1	4	4
S8	1	1	3	4
S9	1	1	3	4
S10	1	1	3	4
S11	1	1	3	4
S12	1	1	3	4
S20	1	1	3	4
S21	1	1	4	4
TA, TB	1	1	3	4
TA02, TB 02	1	1	4	4
RK	1	1	3	4

PRESSURE DROPS WITH VALVE IN DE-ENERGIZED POSITION

	FLOW DIRECTION						
SPOOL TYPE	P-A	P-B	A-T	B-T	P-T		
		CURVES ON GRAPH					
S2, SA2, SB2					6		
S3, SA3, SB3			7	7			
S4, SA4, SB4					7		
S6				7			
S7					8		
S8					8		
S10			7	7			
S11			7				

6 - SWITCHING TIMES

The values indicated refer to a solenoid valve working with piloting pressure of 100 bar, with mineral oil at a temperature of 50° C, at viscosity of 36 cSt and with PA and BT connections. The energizing and de-energizing times are obtained at the pressure variation which occurs on the lines.

TIMES (± 10%)	ENER	GIZED	DE-ENERGIZED		
[ms]	2 Pos.	3 Pos.	2 Pos.	3 Pos.	
AC solenoid	45	30	45	30	
DC solenoid	75	60	60	45	

Г

7 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure for the different spool types.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage.

The values have been obtained with mineral oil, viscosity 36 cSt at 50 °C, and filtration ISO 4406:1999 class 18/16/13.

SPOOL TYPE	CURVE	
	P-A	P-B
S1,SA1,SB1	1	1
S2, SA2, SB2	1	1
S3, SA3, SB3	1	1
S4, SA4, SB4	2	2
S6	1	1
S7	2	2
S8	2	2

SPOOL TYPE	CURVE		
	P-A	P-B	
S9	1	1	
S10	1	1	
S11	1	1	
S12	1	1	
S20	1	1	
S21	1	1	
ТА, ТВ	1	1	
TA02, TB02	1	1	
TA23, TB23	1	1	
RK	1	1	

8 - PERFORMANCE CHARACTERISTICS

PRESSURES [bar]		DSP7	DSP7H	DSC7	DSC7H
	MIN		M	AX	
Pressure in P, A, B ports		350	420	350	420
Piloting pressure (X port and / or Y port)	12 (a)	210 (b)	350	210	350
Pressure in T line with internal drainage	-	140	140	-	-
Pressure in T line with external drainage	-	210	350	210	350

NOTES:

a) The minimum piloting pressure can be of 6 bar at low flows rates, but with higher flow rates a pressure of 12 bar is needed.

b) If the valve operates with higher pressures it is necessary to use the version with external pilot and reduced pressure. Otherwise, the valve with internal pilot and pressure reducing valve with 30 bar fixed adjustment can be ordered.

9 - PILOTING AND DRAINAGE

The DSP7 valves are available with piloting and drainage, both internal and external. The version with external drainage allows for a higher back pressure on the outlet.

X: plug M6x8 for external pilotY: plug M6x8 for external drain

		Plug as	Plug assembly	
		Х	Y	
IE	INTERNAL PILOT AND EXTERNAL DRAIN	NO	YES	
П	INTERNAL PILOT AND INTERNAL DRAIN	NO	NO	
EE	EXTERNAL PILOT AND EXTERNAL DRAIN	YES	YES	
EI	EXTERNAL PILOT AND INTERNAL DRAIN	YES	NO	

9.1 - Backpressure valve incorporated on line P

Valves DSP7 are available upon request with backpressure valve incorporated on line P. This is necessary to obtain the piloting pressure when the control valve, in rest position, has the line P connected to the T port (spools S2, S4, S7, S8, S*2, S*4, TA02, TB02, RK02). The cracking pressure is of 5 bar with a minimum flow rate of 15 l/min.

Add C to the identification code for this request (see paragraph 1).

In the C version the piloting is always internal.

The backpressure valve can be also delivered separately and it can be easily mounted on line P of the main control valve. Specify the code **0266577** to order the backpressure valve separately.

NOTE: the backpressure valve can•t be used as check valve because it doesn•t assure the seal.

The curve refers to the pressure drop (body part only) with backpressure valve energized to which the pressure drop of the reference spool must be added. (see paragraph 5)

10 - ELECTRICAL FEATURES

10.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated 360° , to suit the available space.

NOTE 1: In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see CAT. 49 000).

NOTE 2: The IP65 protection degree is guaranteed only with the connector correctly connected and installed.

VOLTAGE SUPPLY FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 1)	In compliance with 2004/108/CE
LOW VOLTAGE	In compliance with 2006/95/CE
CLASS OF PROTECTION:	
Atmospheric agents (CEI EN 60529)	IP 65 (NOTE 2)
Coil insulation (VDE 0580)	class H
Impregnation: CC valve	class F
CA valve	class H

Coils for direct current (values ± 5%)

10.2 Current and absorbed power for DC solenoid valve

The table shows current and power consumption values relevant to the different coil types for DC.

The rectified current supply takes place by fitting the valve (with the exception of D12 coil) with an alternating current source (50 or 60 Hz), rectified by means of a bridge built-in to the \bullet DŽ type connectors (see cat. 49 000), by considering a reduction of the operating limits by 5 ÷ 10% approx.

Suffix	Nominal voltage [V]	Resistance at 20°C [ohm]	Current consumpt. [A]	Power consumpt. [W]	Coil code
D12	12	4,4	2,72	32,7	1903080
D24	24	18,6	1,29	31	1903081
D48	48	78,6	0,61	29,5	1903083
D110	110	423	0,26	28,2	1903084
D220	220	1692	0,13	28,2	1903085

10.3 Current and absorbed power for AC solenoid valve

The table shows current and power consumption values at inrush and at holding, relevant to the different coil types for AC current.

Suffix	Nominal voltage [V]	Frequency [Hz]	Resistance at 20°C [ohm]	Current consumption at inrush [A]	Current consumption at holding [A]	Power consumption at inrush [VA]	Power consumption at holding [VA]	Coil code
A24	24	50	1,46	8	2	192	48	1902830
A48	48	50	5,84	4,4	1,1	204	51	1902831
	110V-50Hz			1,84	0,46	192	48	
A110	120V-60Hz		32	1,56	0,39	188	47	1902832
4000	230V-50Hz	50/60	1.10	0,76	0,19	176	44	4000000
A230	240V-60Hz		140	0,6	0,15	144	36	1902833
F110	110	60	26	1,6	0,4	176	44	1902834
F220	220	60	106	0,8	0,2	180	45	1902835

Coils for alternating current (values ± 5%)

11 - OVERALL AND MOUNTING DIMENSIONS FOR SOLENOID DISTRIBUTOR DSP7

NOTE: Use of class 12.9 fastening screws is recommended for valves in version H (high pressure).

12 - OVERALL AND MOUNTING DIMENSIONS FOR HYDRAULIC DISTRIBUTOR DSC7

13 - OPTIONS

13.1 Control of the main spool stroke: C

With the help of special side plugs, it is possible to introduce stroke controls in the heads of the piloted valve so as to vary the maximum spool clearance opening.

This solution allows control of the flow rate from the pump to the actuator and from the actuator to the outlet, obtaining a double adjustable control on the actuator.

Add the letter C to the identification code to request this device (see paragraph 1).

13.2 Control of the main spool shifting speed: D

By placing a MERS type double flow control valve between the pilot solenoid valve and the main distributor, the piloted flow rate can be controlled and therefore the changeover smoothness can be varied.

Add the letter **D** to the identification code to request this device (see paragraph 1).

13.3 Subplate with throttle on line P

It is possible to introduce a subplate with a restrictor of \emptyset 0,8 on line P between the pilot solenoid valve and the main distributor.

Add P08 to the identification code to request this option (see paragraph 1).

13.4 Solenoid operated distributor with pilot valve in configuration S2

It is possible to deliver the solenoid operated distributor with pilot valve in configuration S2 (all the ports at outlet). With this option the piloting is necessarily external.

Add S2 to the identification code to request this option (see paragraph 1).

This configuration is used with external piloting in order to allow the unloading of the piloting line when the solenoid operated valve is in rest position.

14 - MANUAL OVERRIDE, BOOT PROTECTED: CM

Whenever the solenoid valve installation may involve exposure to atmospheric agents or use in tropical climates, the manual override, boot protection is recommended.

Add the suffix **CM** to request this device (see paragraph 1).

For overall dimensions see cat. 41 150.

DSP7-S*/D

DSP7-S*/P08

15 - ELECTRIC CONNECTORS

The solenoid operated valves are delivered without the connectors. They must be ordered separately.

For the identification of the connector type to be ordered, please see catalogue 49 000.

16 - INSTALLATION

Configurations with centering and recall springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal.

Valve fastening takes place by means of screws or tie rods, laying the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

NOTE: Use of class 12.9 fastening screws is recommended for valves in version H (high pressure).

17 - SUBPLATES (see catalogue 51 000)

These plates are for the standard valves only. They are not suitable for high pressure (H) versions .

Type with rear ports	PME07-AI6G
Type with side ports	PME07-AL6G
P, T, A, B, port dimensions X, Y; L port dimensions	1Ž BSP 1/4Ž BSP

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

MOUNTING INTERFACE

PERFORMANCES (obtained with mineral oil of viscosity of 36 cSt at 50°C)

DSP10 PILOT OPERATED DISTRIBUTOR SOLENOID OR HYDRAULIC (DSC10) CONTROLLED

SUBPLATE MOUNTING

ISO 4401-10 (CETOP 10)

p max 350 barQ max 1100 l/min

OPERATING PRINCIPLE

- ", The DSP10 piloted valve is a 4-way hydropiloted distributor with a connection surface in accordance with the ISO 4401-10 (CETOP RP121H) standards, operated by a ISO 4401-03 (CETOP 03) solenoid directional valve.
- ", It is available with different spool types (see par. 2) and with some options for the opening control.
- ", It is available with both the solenoid and the hydraulic control from the X and Y ways.
- ", The piloting and the drainage can be made inside or outside the valve by inserting or removing the proper threaded plugs located in the main directional control valve (see paragraph 9).

Maximum operating pressure - ports P - A - B (standard version) - port T (external drainage)	bar	350 210
Maximum flow rate from port P to A - B - T	l/min	1100
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	according to ISO 4	406:1999 class 20/18/15
Recommended viscosity	cSt	25
Mass: DSP10 DSC10	kg	50 48

1 - IDENTIFICATION CODE FOR SOLENOID DISTRIBUTOR DSP10

D S P 1	0 -	1	20	-		1	/		K1	/	
Solenoid operated \dashv directional valve										М	ا anual override
										m in	it for override tegrated in the
ISO 4401-10 (CETOP 10) size-										tu Cl	be (standard) M = manual
· · · · · ·										o\ pr	verride, boot otected
Spool type (see paragraph 2) -										-1	·
S* TA SA* TB									plug	for co	ical connection
SB* RK*									type	DIN 4	13650 (standa)
Series: (the overall and mounting	g dimensions										
	"								aunah		
Seals:							DC D1:	2 = 12	suppiy 2 V	/	
N = NBR seals for mineral oil (st V = FPM seals for special fluids	tandard)						D24 D43	4 = 24 8 = 48	4 V 3 V		
							D1 D2	10 = 1 ² 20 = 22	10 V 20 V		
Piloting (see paragraph 9):		T 400	TDaa				D0	0 = va	alve wi	thout	coils (see NO
I = Internal (not available for spo S*2 - S*4) E = external	JOIS 52 - 54 -	- TA02 -	- 1802 -	RKU2			AC	power	supply	/ 	_
Z = internal piloting with 30 bar f	ixes adjustme	ent pres	sure red	ucing val	/e		A2 A4	4 = 8 =	24 V - 48 V -	50 H	z z
Drainage (see paragraph 9): —							A1 A2	10 = 1 30 = 2	10 V - 30 V -	50 H	z / 120 V - 60 z / 240 V - 60
I = Internal E = External							AU	U = V	aive w		colis (see NU
Controls:							F1	10 = 1 20 = 2	10 V - 20 V -	60 Hz 60 Hz	Z
D = Main spool switching spe	ed control (se	e parag	graph13.	1)			(Fo	or electr	ical ch	aracte	eristics see pa
P15 = Subplate placed under so (see paragraph 13.2)	lenoid valve v	with res	trictor of	Ø1.5 on p	ort P						

NOTE: The locking rings of the coils and the relevant O-Rings are supplied together with valves

2- SPOOL TYPE

N.B.: Symbols refers to the DSP10 solenoid valve. For the DSC10 hydraulic control version, please verify the connection scheme (see par. 3).

Type **S***: 2 solenoids - 3 positions with spring centering

Type **SA***: 1 solenoid side A 2 positions (central + external) with spring centering

Type **SB***: 1 solenoid side B 2 positions (central + external) with spring centering

Type **RK**: 2 solenoids - 2 positions with mechanical retention

Type **TA**: 1 solenoid side A 2 external positions with return spring

Type **TB**: 1 solenoid side B 2 external positions with return spring

If other spool types are necessary please consult our Technical Department

3 - IDENTIFICATION CODE FOR HYDRAULIC DISTRIBUTOR DSC10

4 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code V). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

5 - PRESSURE DROPS $\ p-Q$ (values obtained with viscosity 36 cSt at 50 °C)

PRESSURE DROPS WITH VALVE ENERGIZED

	FLOW DIRECTION						
SPOOL TYPE	P-A	P-B	A-T	B-T			
	CURVES ON GRAPH						
S1, SA1, SB1	1	1	1	1			
S2, SA2, SB2	2	2	2	2			
S3, SA3, SB3	1	1	4	4			
S4, SA4, SB4	2	2	2	2			
TA, TB	1	1	1	1			
TA02, TB 02	1	1	1	1			
RK	1	1	1	1			

PRESSURE DROPS WITH VALVE IN DE-ENERGIZED POSITION

	FLOW DIRECTION							
SPOOL TYPE	P-A	P-A P-B A-T		B-T	P-T			
	CURVES ON GRAPH							
S2, SA2, SB2					3			
S3, SA3, SB3			4	4				
S4, SA4, SB4					4			

6 - SWITCHING TIMES

The values indicated refer to a solenoid valve working with piloting pressure of 100 bar, with mineral oil at a temperature of 50° C, at viscosity of 36 cSt and with PA and BT connections. The energizing and de-energizing times are obtained at the pressure variation which occurs on the lines.

TIMES (± 10%) [ms]	ENER	GIZED	DE-ENERGIZED		
	2 Pos.	3 Pos.	2 Pos.	3 Pos.	
AC solenoid	90	60	90	60	
DC solenoid	130	100	90	60	

7 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage.

The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406.1999 class 18/16/13.

SPOOL TYPE	CURVE		
	P-A	P-B	
S1,SA1,SB1	1	1	
S2, SA2, SB2	2	2	
S3, SA3, SB3	1	1	
S4, SA4, SB4	2	2	
TA, TB	1	1	
TA02, TB02	1	1	
TA23, TB23	1	1	
RK	1	1	

8 - PERFORMANCE CHARACTERISTICS

PRESSURES [bar]						
	MIN	MAX				
Piloting pressure	12 (NOTE a)	280 (NOTE b)				
Pressure on line T with internal drainage	-	140				
Pressure on line T with external drainage	-	210				

NOTES:

a) The minimum piloting pressure can be of 6 bar at low flows rates, but with higher flow rates a pressure of 12 bar is needed.

b) If the valve operates with higher pressures it is necessary to use the version with external pilot and reduced pressure. Otherwise, the valve with internal pilot and pressure reducing valve with 30 bar fixed adjustment can be ordered, inserting the letter **Z** in the code identification at piloting entry.

9 - PILOTING AND DRAINAGE

The DSP10 valves are available with piloting and drainage, both internal and external.

The version with external drainage allows for a higher back pressure on the outlet.

		Plug as	ssembly
	VALVETTPE	Х	Y
IE	INTERNAL PILOT AND EXTERNAL DRAINAGE	NO	YES
II	INTERNAL PILOT AND INTERNAL DRAINAGE	NO	NO
EE	EXTERNAL PILOT AND EXTERNAL DRAINAGE	YES	YES
EI	EXTERNAL PILOT AND INTERNAL DRAINAGE	YES	NO

Y: plug M6x8 for external drain

10 - ELECTRICAL FEATURES

10.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated 360° , to suit the available space.

NOTE 1: In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see CAT. 49 000).

NOTE 2: The IP65 protection degree is guaranteed only with the connector correctly connected and installed.

VOLTAGE SUPPLY FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	6.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 1)	In compliance with 2004/108/CE
LOW VOLTAGE	In compliance with 2006/95/CE
CLASS OF PROTECTION:	
Atmospheric agents (CEI EN 60529)	IP 65 (NOTE 2)
Coil insulation (VDE 0580)	class H
Impregnation: DC valve	class F
AC valve	class H

10.2 Current and absorbed power for DC solenoid valve

The table shows current and power consumption values relevant to the different coil types for DC.

The rectified current supply takes place by fitting the valve (with the exception of D12 coil) with an alternating current source (50 or 60 Hz), rectified by means of a bridge built-in to the •DŽ type connectors (see cat.49 000), by considering a reduction of the operating limits by $5 \div 10\%$ approx.

Coils for direct current (values ± 5%)

Suffix	Nominal voltage [V]	Resistance at 20°C []	Current consumpt. [A]	Power consumpt. [W]	Coil code
D12	12	4,4	2,72	32,6	1902860
D24	24	18,6	1,29	31	1902861
D48	48	78,6	0,61	29,3	1902863
D110	110	423	0,26	28,6	1902864
D220	220	1692	0,13	28,6	1902865

10.3 Current and absorbed power for AC solenoid valve

The table shows current and power consumption values at inrush and at holding, relevant to the different coil types for AC current.

Suffix	Nominal voltage [V]	Frequency [Hz]	Resistance at 20°C [ohm]	Current consumption at inrush [A]	Current consumption at holding [A]	Power consumption at inrush [VA]	Power consumption at holding [VA]	Coil code
A24	24	50	1,46	8	2	192	48	1902830
A48	48	50	5,84	4,4	1,1	204	51	1902831
A440	110V-50Hz			1,84	0,46	192	48	
ATTU	120V-60Hz		32	1,56	0,39	188	47	1902832
4000	230V-50Hz	50/60	1.10	0,76	0,19	176	44	4000000
A230	240V-60Hz		140	0,6	0,15	144	36	1902833
F110	110	60	26	1,6	0,4	176	44	1902834
F220	220	00	106	0,8	0,2	180	45	1902835

Coils for alternating current (values ± 5%)

11 - OVERALL AND MOUNTING DIMENSIONS FOR SOLENOID DISTRIBUTOR DSP10
DSP10

12 - OVERALL AND MOUNTING DIMENSIONS FOR HYDRAULIC DISTRIBUTOR DSC10

13 - OPTIONS

13.1 Control of the main spool shifting speed: D

By placing a MERS type double flow control valve between the pilot solenoid valve and the main distributor, the piloted flow rate can be controlled and therefore the **DSP10-S*/D** changeover smoothness can be varied.

Add the letter **D** to the identification code to request this device (see paragraph 1).

13.2 Subplate with throttle on line P

It is possible to introduce a subplate with a restrictor of Ø1,5 on line P between the pilot solenoid valve and the main distributor. D Add **P15** to the identification code to request this option (see paragraph 1).

14 - MANUAL OVERRIDE, BOOT PROTECTED: CM

Whenever the solenoid valve installation may involve exposure to atmospheric agents or use in tropical climates, the manual override, boot protection is recommended.

Add the suffix **CM** to request this device (see paragraph 1). For overall dimensions see cat. 41 150.

15 - ELECTRIC CONNECTORS

The solenoid operated valves are delivered without the connectors. They must be ordered separately. For the identification of the connector type to be ordered, please see catalogue 49 000.

16 - INSTALLATION

Configurations with centering and recall springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal.

Valve fastening takes place by means of screws or tie rods, laying the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

Surface quality
0.01/100
0.8
<i></i>

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

DS(P)*M

DIRECTIONAL VALVES WITH SPOOL POSITION MONITORING

DS3M	ISO 4401-03 (CETOP 03)
DS5M	ISO 4401-05 (CETOP 05)
DSP5M	CETOP P05
DSP5RM	ISO 4401-05 (CETOP R05)

 DSP7M
 ISO 4401-07 (CETOP 07)

 DSP8M
 ISO 4401-08 (CETOP 08)

OPERATING PRINCIPLE

PERFORMANCES	(working with mineral oil of viscosity of 36 cSt at 50°C)
--------------	---

		DS3M	DS5M	DSP5M DSP5RM	DSP7M	DSP8M	
Maximum operating pressure: P - A - B ports	har	350	320	320	350	350	
T port	bui	21	0	see performance limits at paragraph 6.2			
Maximum flow rate from P to A - B - T	l/min	see performa paragra	ance limits at aph 2.3	150	300	600	
Ambient temperature range	°C			-20 / +50			
Fluid temperature range	°C			-20 / +80			
Fluid viscosity range	cSt			10 ÷ 400			
Fluid contamination degree			According to I	SO 4406:1999 c	lass 20/18/15		
Recommended viscosity	cSt	25					
Mass: single solenoid valve double solenoid valve	kg	1,8 2,2	5 -	7,1 8	8,7 9,6	15,6 16,6	

1 - IDENTIFICATION OF SOLENOID VALVES DIRECT OPERATED

1.1 - Identification code

SPOOLS DS3 TA100 TA S* SA* TB100 ΤВ R0 х SENSOR TYPE MA х х х MB х х х

DS5			SPOOLS	
DS5	5	TA TB	TA02 TB02	TA100 TB100
к	R0			
NSO П NSO	MA	х	х	х
E S	МВ	х	х	х

NOTE: To be compliant with the EN 693:2011 standard, the valves have no manual override.

1.2 - Spool types for DS3M and DS5M

2 - CHARACTERISTIC CURVES OF SOLENOID VALVES DIRECT OPERATED

2.1 - Pressure drops p-Q for DS3M solenoid valves (obtained with viscosity 36 cSt at 50 °C)

	FLOW DIRECTION								
SPOOL TYPE	ΡA	ΡВ	ΑT	ВT	ΡΤ				
		CURVES ON GRAPH							
S1, SA1	1	1	2	2	-				
S4, SA4	4	4	4	4	2				
TA, TB	1	1	1	1	-				
TA100, TB100	3	3	3	3	-				

2.2 - Pressure drops p-Q for DS5M solenoid valves (obtained with viscosity 36 cSt at 50 °C)

	FLOW DIRECTION						
SPOOL TYPE	SPOOL TYPE PA PB A						
	CURVES ON GRAPH						
TA, TB, TA02, TB02	2	2	1	1	-		
TA100, TB100	1	1	1	1	-		

2.3 - Performance limits for DS3M and DS5M solenoid valves

The curves define the flow rate operating fields according to the valve pressure of the different versions.

The values have been obtained according to ISO 64003 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The values have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

The operating limits can be considerably reduced if a 4-way valve is used as 3-way valve with port A or B plugged or without flow.

SPOOL	CURVE				
3FUUL	ΡA	ΡВ			
S1,SA1	1	1			
S4, SA4	2	2			
TA, TB	1	1			
TA100, TB100	3	3			

2.4 - Switching times

The indicated values had obtained according to ISO 6403 standards, using mineral oil with viscosity 36 cSt at 50 $^\circ C.$

TIMES [ms]	ENERGIZING DE-ENERGIZING TIMES [ms]		TIMES [ms]	IMES [ms] ENERGIZING		
DS3M	25 ÷ 75	15 ÷ 25		DS5M	100 ÷ 150	20 ÷ 50

SPOOL	CURVE				
SFUUL	ΡA	ΡВ			
ТА	1	1			
TA02	1	1			
TA100	1	1			

3 - OVERALL AND MOUNTING DIMENSIONS FOR DS3M

4 - OVERALL AND MOUNTING DIMENSIONS FOR DS5M

5 - IDENTIFICATION OF SOLENOID VALVES PILOT OPERATED

5.1 - Identification code

	D	SI	P I	M -			-	/				K1					
														/			
											Í	Monitor	ed po	sition	: 		
ecti end	onal val	ve, olled										(see pa logic)	r. 17 f	or sw	litchin		
t o	perated											1 posit	ioning	g sen	sor		
												R0 = re	est pos	sition			
												m MA – n	nonitor	ed • • • •	monite		
e:												MB = p	ositior	n •b• i	monito		
)5 -05 (CET										2 posit	ioning	g sen	sor		
IS	0 4401-0	03 (CETC	OP 07)									MO = r	est po	sition	I		
IS	O 4401-(08 (CETC	OP 08)									r MAB =	•a• an	id •b•	positi		
												r	nonito	red			
nito	oring of t	he spool	position -														
	0										C	oil electric	al con	necti	on:		
ool	type (se	e paragra	aph 5.2)								plı ות	ug for con	nector stand	type lard)	•		
	SA1	SB1		3 3100													
				5100													
iec										DC p	owe	r supply					
- fo	or DSP5	M, DSP5	RM and DS	SP8M						D12	= 12 - 24	V	D11	0 = 1 0 = 2	10 V		
= fo	or DSP7I	M								024	- 24	v	DZZ	U – 2	20 V		
e o\ rer	verall and main und	d mountir hanged)	ng dimensi	ons within	the same												
		0,															
als:								P =	Sub	plate wit	h re	strictor on	port F	plac	ed		
= NI	BR seals	for mine	ral oil (sta i	ndard)				valv	er pr es w	ith fixed	adji	ustment re	educin	g val	ve - ve		
: FF	PM seals	for spec	ial fluids					Z - a	and f	for flow of	contr	ol valves	for the	cont	rol of		
								D =	n spo mair	n spool s	ng - shifti	na speed) contro	l (se	e par.		
otin	g (see pa	aragraph	7):						man			ng opoou	oonao		o pui:		
= ir	nternal (r	not availa	ble for S4	spool)													
= e = ir	nternal p	iloting wit	h backpres	ssure valve	9			— DI	aina - Int	ge (see	para	agrapn 7):					
. (;	available	on DSP	7 and DSP	8 only)				E	= Ext	ternal							
int (s	ernai pilo see par.	oung with 6.2)	30 Dar fixe	es adjustm	ent pressure	e reaucin	ig valve										
E.	Vorify o	nooland	l concor to	ne availa	hility in the	tahla ba	low										
<u>.</u> .	veriny S		1 301 I)														
			-	SPOOL	5		_										
		S*	SA* SB*	TA TB	TA100 TB100	RK											
	R0	x					1										
Ī	MA		x	x	x	х											
ļ	MB		x	x	x	х	1										
ľ	MO	x					1	I	ют	E: To b	e co	mpliant w	ith th	e EN	l 693:		
ŀ	MAR	x	x	x	x			5	stand	dard, the	valv	ves have r	no mar	nual o	overrio		
1				~~	~												

5.2 - Spool types for DSP5M, DSP5RM, DSP7M and DSP8M

6 - CHARACTERISTIC CURVES (values obtained with viscosity 36 cSt at 50 °C)

6.1 - Pressure drops for pilot operated valves

	FLOW DIRECTION							
SPOOL TYPE	ΡA	ΡВ	ΑT	ВT	ΡТ			
		CURV	'ES ON C	GRAPH				
S1, SA1	4	4	1	1	-			
S3	4	4	1	1	-			
S4	5	5	2	3	5			
TA, TB	4	4	1	1	-			
TA100, TB100	3	3	1	1	-			
RK	4	4	1	1	-			

For pressure drops of the S3 spool between A-T and B-T ports in central position refer to the curve 4.

FLOW DIRECTION						
SPOOL TYPE	ΡA	ΡВ	ΑT	ΒT	ΡТ	
		CURVES ON GRAPH				
S1, SA1	1	1	3	4	-	
S3	1	1	4	4	-	
S4	2	2	4	5	4	
TA, TB	1	1	3	4	-	
TA100, TB100					-	
RK	1	1	3	4	-	

For pressure drops of the S3 spool between A-T and B-T ports in central position refer to the curve 4.

DSP8M

		FLOV	V DIREC	TION	-
SPOOL TYPE	ΡA	ΡВ	AT	ВT	ΡT
		CURV	ES ON G	RAPH	
S1, SA1	2	2	3	3	-
S3	2	2	2	1	-
S4	4	4	3	5	6
TA, TB	2	2	3	3	-
TA100, TB100	5	5	5	5	-
RK	2	2	3	3	-

For pressure drops of the S3 spool between A-T and B-T ports in central position refer to the curve 4.

6.2 - Performance limits for DSP5M - DSP7M - DSP8M pilot operated directional valves

PRESSURES	DSP5M DSP5RM	DSP7M	DSP8M
Max pressure in P, A, B ports	320	350	350
Max pressure in T line with internal drainage	140	140	140
Max pressure in T line with external drainage	210	210	210
Min piloting pressure (X port and / or Y port) NOTE 1	5 ÷ 10	5 ÷ 12	7 ÷ 14
Max piloting pressure (X port and / or Y port) NOTE 2	210	210	210

NOTE 1: minimum piloting pressure can be the lower range value at low flows rates, but with higher flow rates the higher value is needed.

NOTE 2: if the valve operates with higher pressures it is necessary to use the version with external pilot and reduced pressure. Otherwise, the valve with internal pilot and pressure reducing valve with 30 bar fixed adjustment can be ordered. Add the letter Z to the identification code to order this option (see par. 5.1).

MAXIMUM FLOW RATES		DSP5M DSP5RM		DSP7M		DSP8M	
		PRESSURES					
Spool type		at 210 bar	at 320 bar	at 210 bar	at 350 bar	at 210 bar	at 350 bar
S4 - TA100	[l/min]	120	100	200	150	500	450
S1 - S3 - TA - RK		150	120	300	300	600	500

6.3 - Switching times

and external.

pressure on the outlet.

The values indicated refer to a solenoid valve working with piloting pressure of 100 bar, with mineral oil at a temperature of 50°C, at viscosity of 36 cSt and with PA and BT connections.

The energizing and de-energizing times are obtained at the pressure variation which occurs on the lines.

These valves are available with piloting and drainage, both internal

The version with external drainage allows for a higher back

ENERGIZING **DE-ENERGIZING** TIMES (± 10%) [ms] 2 Pos. 3 Pos. 2 Pos. 3 Pos. **DSP5M - DSP5RM** 60 50 50 40 DSP7M 75 60 60 45 DSP8M 100 70 80 50

TYPE OF VALVE		Plug assembly		
	TTPE OF VALVE		Y	
IE	INTERNAL PILOT AND EXTERNAL DRAIN	NO	YES	
II	INTERNAL PILOT AND INTERNAL DRAIN	NO	NO	
EE	EXTERNAL PILOT AND EXTERNAL DRAIN	YES	YES	
EI	EXTERNAL PILOT AND INTERNAL DRAIN	YES	NO	

X: plug M5x6 for external pilot

7 - PILOTING AND DRAINAGE

Y: plug M5x6 for external drain

DSP5M DSP5RM X: plug M6x8 for external pilotY: plug M6x8 for external drain

X: plug M6x8 for external pilot Y: plug M6x8 for external drain

DSP8M

7.1 - Backpressure valve incorporated on line P (C option)

DSP7M and DSP8M valves are available upon request with backpressure valve incorporated on line P. This is necessary to obtain the piloting pressure when the control valve, in rest position, has the line P connected to the T port (spools S4). The cracking pressure is of 5 bar with a minimum flow rate of 15 l/min.

In the C version the piloting is always internal.

NOTE: the backpressure valve can•t be used as check valve because it doesn•t assure the seal.

Add C to the identification code for this request (see paragraph 5.1).

For DSP7M only, the backpressure valve can be also delivered separately and it can be easily mounted on line P of the main control valve. Ask for code 0266577 to order the backpressure valve.

pilot always internal Y: plug M6x8 for external drain

 $a\overline{7}$

The curve refers to the pressure drop (body part only) with backpressure valve energized to which the pressure drop of the reference spool must be added. (see paragraph 6)

8 - OPTIONS: CONTROL OF THE MAIN SPOOL SHIFTING SPEED

By placing a MERS type double flow control valve between the pilot solenoid valve and the hydropiloted valve, the piloted flow rate can be controlled and therefore the change over smoothness can be varied.

Add the letter ${f D}$ to the identification code to request this device (see paragraph 5.1).

dimensions in mm					
	DSP5	DSP7	DSP8		
А	218	225	254		

10 - DSP7M OVERALL AND MOUNTING DIMENSIONS

11 - DSP8M OVERALL AND MOUNTING DIMENSIONS

12 - DSP*M-*/*-Z*/* OVERALL AND MOUNTING DIMENSIONS

13 - MOUNTING SURFACES

13.1 - Direct operated valves

13.2 - Pilot operated valves

14 - ELECTRICAL FEATURES

14.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated and locked to suit the available space.

NOTE 1 : In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see catalogue 49 000).

NOTE 2: The IP65 protection degree is guaranteed only with the connector correctly connected and installed.

VOLTAGE SUPPLY FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	
DS3M	15.000 ins/hr
DS5M	13.000 ins/hr
DSP5M - DSP5RM	5.000 ins/hr
DSP7M	5.000 ins/hr
DSP8M	4.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 1)	In compliance with 2004/108/EC
LOW VOLTAGE	In compliance with 2006/95/EC
CLASS OF PROTECTION: Atmospheric agents (CEI EN 60529) Coil insulation (VDE 0580) Impregnation	IP 65 (NOTE 2) class H class F

14.2 - Current and absorbed power

The tables shows current and power consumption values relevant to the different coil types for DC.

DS3M, DSP5M, DSP5RM, DSP7M and DSP8M (values ± 5%)

Suffix	Nominal voltage [V]	Resistance at 20°C []	Current consumpt. [A]	Power consumpt [W]	Coil code
D12	12	4,4	2,72	32,7	1903080
D24	24	18,6	1,29	31	1903081
D110	110	423	0,26	28,2	1903084
D220	220	1692	0,13	28,2	1903085

DS5M (values ± 5%)

Suffix	Nominal voltage [V]	Resistance at 20°C []	Current consumpt. [A]	Power consumpt [W]	Coil code
D12	12	3,2	3,75	45	1903200
D24	24	12	2	48	1903201
D110	110	250	0,44	48	1903204
D220	220	1050	0,21	47	1903205

15 - COIL CONNECTORS

The solenoid operated valves are delivered without the connectors. They must be ordered separately.

For the identification of the connector type to be ordered, please see catalogue 49 000.

16 - POSITIONING SENSORS

R0 CONNECTION SCHEME

M* CONNECTION SCHEME

Pin	Values	Function
1	+24 V	Supply
2	NC	Normal Closed
3	0 V	-
4	NO	Normal Open

NOTE: The M0 and MAB versions have two positioning sensors; consider that the connection scheme shown must be done for each sensor.

ELECTRICAL CHARACTERISTICS					
Operating voltage range	V DC	20 ÷ 32			
Absorbed current	А	0.4			
Max output load	mA	400			
Output		2 PNP			
Electric protections	polarity inversion short circuit				
Hysteresis	mm	0.1			
Operating temperature range	°C	-25 ÷ +80			
Class of protection according to CEI EN 60529 standards (atmospheric agents)		IP65			
EMC Electromagnetic compatibility	DIN EN 61000-6-1/2/3/4				

17 - SWITCHING LOGICS

Duplomatic offers a wide range of available positions to be monitored, and for the pilot operated valve there are even monitorning with redundant signal.

17.1 - R0 monitoring

Rest (middle) position monitored with one positioning sensor.

Available on both direct and pilot operated valves;

spool type S*

17.2 - MA monitoring

Energized position monitored with one positioning sensor.

Available on both direct and pilot operated valves; spool type SA*, TA, TA02, TA100

Position •a• monitored with one positioning sensor.

Available on pilot operated valves only; spool type RK

De-energized position monitored with one positioning sensor.

Available on both direct and pilot operated valves; spool type SB*, TB, TB02, TB100

17.3 - MB monitoring

De-energized position monitored with one positioning sensor.

Available on both direct and pilot operated valves; spool type SA*, TA, TA02, TA100

Position •b• monitored with one positioning sensor.

Available on pilot operated valves only; spool type RK

17.4 - M0 monitoring

Rest (middle) position monitored by two separate positioning sensors.

Available on pilot operated valves only; spool type S*

Energized position monitored with one positioning sensor.

Available on both direct and pilot operated valves; spool type SB*, TB, TB02, TB100

17.5 - MAB monitoring

Both external positions monitored by two separate positioning sensors.

Available on pilot operated valves only; spool type S*

De-energized position monitored on side A.

Energized position monitored on side B. Available on pilot operated valves only;

spool type SA1, TA, TA100

Energized position monitored on side A. De-energized position monitored on side B. Available on pilot operated valves only; spool type SB1, TB, TB100

18 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

19 - INSTALLATION

The valves can be installed in any position without impairing correct operation.

Valve fastening takes place by means of screws or tie rods, laying the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

Surface finishing	
0.01/100	
0.8	

20 - SENSOR CONNECTORS

The female connectors for position switches can be ordered separately, by specifying the descriptions here below, depending on the desired type.

STRAIGHT CONNECTOR, MOLDED CABLE, PRE-WIRED

description: ECM4S/M12L/10

Protection class: IP68

Cable: with 4 conductors 0.34 mm² - length 5 mt - Ø 4.7 mm Cable material: polyurethane resin (oil resistant) Without LED.

ANGLED CONNECTOR, MOLDED CABLE, PRE-WIRED

description: ECM4S/M12S/10

Protection class: IP68 Cable: with 4 conductors 0.34 mm² - length 5 mt - Ø 4.7 mm Cable material: polyurethane resin (oil resistant) Without LED.

ANGLED CONNECTOR, UNASSEMBLED

Circular connector with screw locking; strain relief by means of clamping cage.

description: EC4S/M12S/10

Protection class: IP67 IEC 61076-2-101 (Ed. 1)/ IEC 60947-5-2 Conductor size: max 0.75 mm² Cable gland: PG7 - suitable cables: $4 \div 6 \text{ mm}^2$ Case material: polyamide (nylon) Without LED.

21 - SUBPLATES (see catalogue 51 000)

	DS3M	DS5M	DSP5M	DSP7M	DSP8M
Type with rear ports	PMMD-AI3G	PMD4-AI4G	PME4-AI5G	PME07-AI6G	
Type with side ports	PMMD-AL3G	PMD4-AL4G	PME4-AL5G	PME07-AL6G	PME5-AL8G
P, T, A, B ports dimensions	3/8Ž BSP	3/4Ž BSP (PMD4-AI4G)	3/4Ž BSP	1Ž BSP	1 ½Ž BSP
X, Y ports dimensions	-		1/4Ž BSP	1/4Ž BSP	1/4Ž BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24

Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

#\$ & (" \$& " \$

				D*KD2
			,\$	#' #" \$&##
		0	·# "# /#" #"	# #\$ & (/ 8 # * * '
9=	: 3	α ><	(# # ?;91=35 E9BB	(œ# (,
•			' # M	* %&
			' # M	* %&
•	\$		(#\$\$	
'	\$	&	' # M	* %& (
	\$		' # M	* %&
	\$		' #	* %&
•	\$		' #	* %&

V *: 7 EA-37 @A;6 AB7D3F76 6;D75F,A@3>5A@4DA>H3+H7E 3D7 ;@ 5A? B;3@57 I ;F. * . EB3@63D6E 3@6 3D7 EQ;B34-37 8ADF: 7 GE7 ;@BAF7@F;3+X 7JB;AE;H7 3F? AEB: 7D7 E F: 3F83≫ I ;F. ;@F: 7 * . 7;F. 7D 8AD 93 E AD 8AD 6 GEF 5-38EE;853F,A@) 77 B3D 8AD * . 5-38EE;853F,A@ AB7D3F;@ F7? B7D3FGD7E 3@6 7375FE563>5: 3D35F7DEF;5E

V	*:76;D75FA	NB7D3F76H3⊁H7E3I	77 3HB;≫34≯7	;@)%
	* %&	3@6)%	* %&	E;L7 3HB;≫34≯7
	B;≫AFAB7D3	F76 E;L7E 3D7	* %& &) %
	* %& () %	* %&) %
	* %&	3@6)%	* %&	

- V *:7 EF3F7?7 @FA85A@3AD?;FK FAF.7 GB?7@F,A@76 EF3@63D6E;E3≯3KEECBB3;761;F.F.7 H3⊁17
- V) ! 3 @6 " ! H3 + 17 E 3 D7 EGBB ⇒ 76 I ; F. 3 8 @E ; @9 EGD3857 FD73F? 7 @F L; @5 @5=7> EG; B4 - 7 A 7 @EGD7 3 E3 - FEBD3K D7 E; EF3 @57 GB FA : F7 EF AB7 D3 F7 6 355 AD6 ; @9 FA + \$ \$) % EF3 @63 D6 E 3 @6 F7 EF 7 H3 - G3 F, A @ AB7 D3 F7 6 355 AD6 ; @9 FA + \$ \$) % EF3 @63 D5 E & AD) & ! H3 + 17 E F; E FD7 3 F? 7 @F; E 3 H3; > 24 - 7 GBA@D7 CG7 EF

		•		'\$ '\$ &	'\$	'\$	'\$
# 3J;? G? AB7D3F;@9 BD7EEGD7 & BAD7E * DATE	43D						
				E/ /	AD/Lor, ಅ∌ ⊰? ;	ாட லால் பல் அடில் நட	
#3j;?G?8A18DA?&BADFFA *	>? ;@						
?4;7@FF7?B7D3F3D7D3@97	М			\$ (3@6	&# `	\$"	
xG,6 F7? B7D3F9D7 D3@97	м			\$ (3@6	&# `</td><td>\$"</td><td></td></tr><tr><td>£G6 HE5AE;FK D3 @97</td><td>5) F</td><td></td><td></td><td>[</td><td></td><td></td><td></td></tr><tr><td>xG6 5A@B?;@3F,A@679D77</td><td></td><td></td><td>55AD</td><td>;@9FA)%</td><td>5%⊞</td><td></td><td></td></tr><tr><td>(75A??7@676H,E5AE;FK</td><td>5) F</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>#3EE E;@97EA7@A;6H3⊁17 6AG47EA7@A;6H3⊁17</td><td>=9</td><td></td><td></td><td></td><td></td><td></td><td></td></tr></tbody></table>		

\$ & # &! " ' IAD=;@9 I;F:?;@7D3>A;>A8HE5AE;FKA8 5) F3F M

D1912;5 A?>>;A

,7DE;A@* EA⊐7@A;6E BAE;F,A@E I;F:EBD;@957@77D;@9	,70E;A@" EA-F@A;6E;67 BAE;F;A@E 57@E03> 7JF7D@S> I;F:EBD;@957@F7D;@9	,7DE;A@* EA-37@A;6E;67 BAE;F,A@E57@ED3>7JF7D@3> I;F:EBD;@957@F7D;@9
$a \overset{A}{\checkmark} \overset{B}{\frown} \overset{B}{\leftarrow} b \overset{B}{\leftarrow} b$ $P T$ $S1 \overset{C}{\checkmark} \overset{C}{\leftarrow} C$	$A = B$ $a = 10^{M}$ $P = T$ $SA1 = 10^{M}$ $SA2 = 10^{M}$ $SA2 = 10^{M}$ $SA3 = 10^{M}$ $SA4 = 10^{M}$ $SA4 = 10^{M}$	A B $P T$ $SB1$ $SB2$ $M H H H H$ $SB2$ $M H H H H$ $SB3$ $M H H H$ $SB3$ $M H H H$ $M H H$ $M H H$ $M H H$ $M H H$
, 7DEA@& EAF@A6E BAE;FA@E I;F. ? 75: 3@53>67F7@F	, 70ЕА@(EA37@A;6 E;67 7JF7D@3>BAE;FA@E I;F. D7F9D@EBD;@ агга Б	, 70E;A@(EA=7@A;6 E;67 7JF7D@>BAE;F;A@E I ;F: D7F3D@EBD;@ A B ~~{a} btsp
RK ZIXII: RK ZIXII: #(** ⊞BAA>;E @AF3HB;-347 8AD(EA-7 @A;6 HB+17E	TA $\mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} $	

& (&'() &* ' " \$ & #&! " ' # & (#\$ & ('# "# * * '

.

\$@5AAC@54@6?AJ?%

I;F.?;@7D3>A;>A8H,E5AE;FKA8 5)F3F M

* * . * *

	"%- (* %\$				
'\$##	&^	&^	۸ *	^ *	
	+(,)%\$(&			<u>k</u>	
))))					
))))					
))))					
))))					
))))					
* *					
* *					
* *					
(!					

"&. * *

	" <i>%</i> - (* %\$					
'\$##	&^	&^	^ *	^ *	&^ *	
		+(,) %\$	(&		
))))						
))))						
))))						

"&. * *

		"	% -	(*	%\$)
'\$##	&^		&′	`	* ۸	*	۸ *
		+((,) %	\$(&)
)							
)							
)							
)							
)							
(!							
*							
*							
*							

"&. * *

	" %-	(*	%\$)	
'\$##	^ *	۸ *	&^ *	
	+(,)%\$(&)	
)				
)				
)				

\$5@e>@ 1=35 ;9<9BA

*:7 5 CDH7E 678,@7 F.7 8AI D3F7 AB7D3F;@9 87-56E 355AD5;@9 FA F.7 H3+H7 BD7EECD7 A8F.7 6;887D7 @FH7DE;A@E *:7 H3-5G7E:3H7 477@A4F3;@76 355AD5;@9 FA)% @AD? I;F. EA-37@A;6E 3FD3F76 F7? B7D3FCD7 3@5 ECBBB3;76 I;F. HA+7697 7CC33>FA A8F.7 @A?;@3>HA+7697 I;F.?;@7D3>A;> I;F. H,E5AE;FK 5) F F7? B7D3FCD7 M 3@5 8\$HD3F,A@355AD5;@9 FA)% 5-33EE

*:7 AB7D3F;@9 ≱?;FE53 @47 5A@E;67D34±XD76C676;83 I3KH3±H7;EGE76 3E I3KH3±H7I;F.BADF AD B×93976 ADI;F.AGF8AI

.

	•	#	"#	*	*
	' ¢	##)	&*	
	Ψ	<i>π π</i>		&^	&^
)))			
)))			
)))			
)))			
)))			
*	*				
*		*			
*		*			
(!				

) &*

'\$##

)

*

)

)

)

) (!

@AF3HB;>347

'E9B389⊨7B3×5A

*:7;@6;53176H3x57E3107A4B;@76355A106;@9FA)% BF3@63106H;F??;@7D3>A;>H;E5AE;FK 5)F3F M

	•			
(!'/< A0	\$ (0\$	\$ (0\$	\$ (0\$	\$ (0\$
			[[
([

D

D

	,									,				•	•		•					•					,		,				
	(,	•	•		(1	7	# 3	ŏ	((!	\$	ŏ.	()	ŏ.	•			()	ŏ.			2	£	(ά.	(•			
ADH 5707;	-B ≯ 17 853F7	'E EG, 7E F: 7	134 <i>3</i> 75A2	8AD	3BB> 3F,A@	;53F; @HB:	'A@: ₩7 :	3@6 5A;>	@EF3: B85/	≫3F,/ \C? ′	۹@;« ?; G	@BAF 1;E1	17@ G A	₹3≯ \ 9 =3	K7. 3; C 4	JB;A I 5A	E;H7 B85	3F? 453	A⊞3 ;1@2	7D7E BB>=>(355/ 6 3>=	\D6;@ =6⊳@	9 FA 9 9 B C	₿₿	B85	6;D7 490	5F;H/	' BD7 05 1=	E5D = 4)BF;A@ B85 >	E (?5@2	BB-A? B9 ⊨7 ′	3F,5 1=4
< 19	= B =1	1=35	< 1=	:C1;	B 81	B3>	=BI 9	9 = A1	;; BB	59 -	6≻@	2183	▶=	=55	545	46=	@	3>@	@3B	CA5 >6	6 B 85	D1;D)59=	: ?>	B 5=	E91 ;;	G5F	?;>/	٩D5	5 5=D	9@=<	: 5=B	A
A;≯ 7JB≯	E 3EE AE;H7	=7?4: '3F?/	₹6 A AEB:	\@F∷ 7D7E	7E7	HB≯	7E	: 3Hī	477	@E	7B3	D3F7:	¥ 5	57 D ,	876	35	5AD	6;@	FA	* . 6	;D 7 5F	;H7 3	66	EA I	₹7K	(30)	7 EG,	B4≯	84	DŒ7	;@B/	AF7@₹;	3≯
*:7	*1;I HB≯T 5≫E	D5 (7E53 E ;853	, @47 8F;A@	3;1A Œ76 2I;F	A9698 840 F:7	3 1B⊅ 3BB 8A≫	•= \$53 Al	F,A@2 ?3D	∃3@6 ;@9	;@E	B≫∂	F,A@	E;@	0BA	17@	₹3≯	∢7J	BAE	;H73	F? AEB:	:7 D 7	EF:3	F83:	> ;	₹;@	97;F	7DF:	7*			ADF	57 *	
# (!\$	_ %))	,	&%	6+() #)*)									# (!\$	_ %(+)*)											
8AD\$	3@6 (Ex	; Е7 >	'3Æ	(2	ł	н (1	Н									8AD	\$ 3@	6, E7: }	3Æ	(н	2	\$	\$	6	ł	1 ([1	н		
8AD\$	" E7	3æ }		(2	N	н	(1	н									8AD\$	т Е С	73æ ∕		(н	2	\$	9	6	01	- ((1	н		
) B7 6;D7	75;8,5 75F;H7	?3⊑ 3@6	⊎;@9/ D7:31	487J 76 F	IB;AI 75:	E;A@ @53	, 2)BDA 3>EB7	F75F,/ 75;85	\@3 3F,A	E* @D7	0 G 71	EFE) B 6;D	75;8;5? 75F;H73	93D⊫ 3@6I	;@9 A D7>3F	87J 76 F	B;AI 75:	E;A@ @53) BDA >EB	NF75F 175;8	a@3 53F,A	E .@[* . 7037E	Æ		

- DAGB 8ADEGD3857 B-3 @FE 3F79ADK : ;9: BDAF75F,A@7>;9;47 8ADLA@7 F. 7 D78 AD7 3 JEA 7 3;9;4 77 8 AD53 F79 ADK LA@7 * KB7 A83F? AEB: 7D7 I ;F. 93E7E H3BACDE ? ;EFE
- 3E9DAGB F. 7 D78 AD7 3 JEA 7 3;9;4 77 8 AD9 DAGB 3@6
- * 7? B7D3FED7 5-3EE ? 3J EGD3857 F7? B7D3FED7
- 4 &" BDAF75FA@\$7H7>8AD7\$75FD53>67H57E
- M *3 М ? 4;7@FF7? B7D3FGD7 D3@97 8ADH3 +H7E1 ;F. 4AF. \$ 3@6, E73≴
- `M*3 M ? 4;7@FF7? B7D3FED7 D3@97 8ADH3 ⊁17E1 ;F. \$" F73₽
- * KB7 A83F? AEB: 7D7 I ;F. 6GEFE GEFE 9DAGB F: 7 D78 AD7 3 JEA 7 3;9;4 37 8 AD9 DAGB 3@6

3179ADK : 9: BDAF75FA@ 7>9:47 8ADLA@7

F. 7 D78 AD7 3 = A 7 = 9;4 = 7 8 AD53 F79 ADK LA@7

- M * 7? B7D3FGD7 5-3EE ? 3J EGD3857 F7? B7D3FGD7
- 4 &" BDAF75FA@J7H7>8AD7J75FD53>67H57E

DAGB 8ADECI3857 B-3 @FE

& DAF75F, A @ 679 D77 8DA? 3F? AEB: 7D 5 397 @ E 355 AD 5; @ FA & & \$

)*KD2

- М *З ? 4;7@FF7? B7D3FGD7D3@978ADH3+H7EI;F.4AF.\$ М 3@6, E73⊁E
- M * 3 M ? 4;7@FF7? B7D3FGD7 D3@97 8ADH3+H7EI;F. \$" E73√E

>9,A (, 3;1AA96981B9>=

*:75A;>A8F.77JB-AEA@BDAA8HB+17E;E;67@F;8761;F.;TEAI@F39Ⅰ:;5:53D077EF.7D7-3FH7 * . ?3D+;@9 (85<5381=981;3>=AB903B9>=>6 B85 3>9 8>CA9=7 9A < 145 9= >@5 @5 5=AC@ 9A @A9AEI=35 B· ?>AA92;5 9=B5@1; 5F?;>A9= 1=4 B· 1D>94 1=G5F?;>A9= ?@?171B= B· BB5 > CBA945 5= D9@ = < 5= B < 1B389=7 1= K F 4 L BG?5 ? @ B53B = 5F?;>A9 = ? @ > 63>9

AD7 AH7 D F. 7 EA-37 @A;6 ;E 67E;9 @76 FA ? 3; @F3; @; FE EGD8357 F7? B7D3 FGD7 47-XAI F. 7 >? ; FE EB75; 8; 76 FA F. 7 D7-37 H3 @F5-33 EE *:7 (5A; £ 8AD3 + 7 D@3 F; @9 5 CDD7 @FECBBK 5 A @B3; @3 4 G; F; @D7 5 F; 8 7 D 4 D 6 9 7

7D7 47 XI KAG 8 @6 F. 7 5A; £? 3D+; @9

(! \$ _%(_)) , &%+() #)*)

(Ex)

F 4 (2 NH (1 н

) B75;85 ? 3D=;@9 A87JB=AE;A@BDAF75F;A@3E * 6;D75F;H7 3 @6 D7 % F76 F75: @53>EB75;853F;A@D7 CG7 EEE DAGB 8ADEGD8857 B-3 @E 3F79ADK :;9: BDAF75F,A@7>;9;4-7 8ADLA@7 F. 7 D78AD7 3 JEA 7 39;4 7 8AD53 F79 ADK LA@7 * KB7 A83F? AEB: 7D7 I;F. 93E7E H3BAGDE ?;EFE

- J 6 W0XBDAF75FA@FKB7 7JB;AE:A@BDAA853E7 3F9DAGB
- F. 7D78AD7 3 = EA 7 = 9;4 = 7 8 AD9 DAGB 3 @6
- * 7? B7D3FGD7 5%3EE ? 3J EGD3857 F7? B7D3FGD7
- 4 &" BDAF75F,A@;7H7>8AD7;75FD;53>67H;57E `M*3 M ? 4;7@FF7? B7D3FGD7 D3@97

(! \$ _%(+)*)

(Ex) FB2 (H 2\$ \$ NH (1 н

-) B75;85 ? 3D=;@9 A87JB>AE;A@BDAF75F;A@3E * 6;D75F;H7 3 @6 D7:3F76 F75: @53>EB75;853F;A@D70G7EE DAGB 8ADEGD38357 B-3 @FE 3F79ADK : ;9: BDAF75F,A@7>;9;47 8ADLA@7 F. 7 D78AD7 3 = A 7 = 9;4 = 7 8 AD53 F79 ADK LA@7
 - * KB7 A83F? AEB: 7D7 I ;F. 6GEFE
- JF4 Y4ZBDAF75FA@FKB7
 - GEFE 9DAGB F. 7 D78 AD7 3 = A 7 > 9;4 > 7 8 AD9 DAGB
- 3@6 M * 7? B7 D3 FOD7 5-3 EE ? 3 J EOD2857 F7? B7 D3 FOD7
- 4 &" BDAF75F,A@77H7>8AD775FD;53>67H;57E
- & & DAF75F, A @ 679 D77 8DA? 3F? AEB: 7D 5 397 @ E 355 AD 5; @ FA & \$
 - M * 3 M ? 4;7@FF7? B7D3FGD7 D3@97

#?5@139⊨7 B5<?5@1BC@6A

*:7 AB7D3F;@9 3? 4;7 @FF7? B7D3FGD7 ? GEF47 47F1 77 @ M &ADH3+17E1 ;F:4AF:\$3@6 , E73xE 3@6 ` M &ADH3+17E1 ;F:\$" E73xE

*:78G;6F??B7D3FCD7?GEF4747F177@M8ADH3+H7E1;F.4AF.\$3@5,E735E3@5`M8ADH3+H7E1;F.\$"E735E

:7 H3≯H7E 3D7 5-38EE;876 ;@ F7? B7D3F6D7 5-38EE * M F:7D78AD7 F:7K 3D7 7,39;4-7 8ADAB7D3F;A@3-2EA 3F: ;9:7D5-38EE F7? B7D3F6D7 * * * 8AD93E 3@6 * M 8AD6GEF

(#?B≫= *5@49>=6⊳@(B5<?5@1BC@63;1AA

:7 H3+H7E 5-35EE;876 8AD F7? B7D3FCD7 5-35EE 3D7 EC;F34-7 8ADAB7D3F;A@;@BAF7@F3+K7JB+AE;H7 3F? AEB:7D7E1;F: 3?4;7@F7? B7D3FCD7E 47Ff 77@ M 8AD4AF: H3+H7E1;F: \$ 3@6, E735E 3@6 M 8ADH3+H7E1;F: \$" E735E

*:7 86G6 F7? B7D3F6D7 ? GEF47 47F1 77@ M 8AD4AF: H3+17E1 ;F: \$ 3@6 , E73±2 3@6 ` M 8ADH3+17E1 ;F: \$ "E73± *:7 H3+17E 3D7 5-3EE;876 ;@* F7? B7D3F6D7 5-3EE * M F:7D78AD7 F:7K 3D7 7,39;4-7 8ADAB7D3FA@3±A 3F: ;9:7D5-3EE F7? B7D3F6D7 * *

* * 8AD93E3@5 * M 8AD6GEFE

:7?3D=;@98AD 5>3EEF?B7D3F3D7H7DE;A@E3D7

, ",) # (!\$	_%(_)), &%+()#)*)	, ",) # (! \$ _%(+)*)
8AD\$3@6,E73来E		84D\$ 3@6, E73 /E
Æx ((2 H (1 H	€ (H2\$\$ H(1 H)
8AD\$" E73 ,E		8AD\$ " E73 .E
(Ex)	(2 N H (1 H	€x (H2\$\$NH(1H
%"#(!\$_%	(()))<	%"# (!\$_%(+)*)
€x F4	4 (2 N H (1 H	Ex FB2 (H2\$\$ NH(1 H)

A;> ₩167	\$A?;@3> HA3F397 1,2	(7E;EF3@57 3F M 1T2	GDD7@F 5A@EG?BF 12	&AI 7D 5A@EG? BF 1-2

A;> ₩B7 " #(\$A?;@3> HA#397 1,2	D7C 1 L2	(7E;EF3@57 3F M 1T2	GDD7@F 5A@EG?BF 12	&AI7D 5A@EG?BF 1,2
&	, L , L				
&	, L , L				

"#(FKB7 (5A; 差 3D7 8AD3 ¥7 D®F; @ 5CDD7 @ ECBB¥K 8AD4AF: AD L AD(5A; 差 F.7 D7E; EF3 @ 57 53 @ @AF47 ? 73ECD76 ; @ F.7 CEC3> I 3K 4753 CE7 A8F.7 BD7 E7 @ 57 A86; A67 E 4D697 ; @ E67 F.7 5A;>

*# (')\$\$ -) () (#" DBB57;@526676	R, @A?
! , '+ (#" & %) " -) ! " !) & !) & (!) & !) & !) & !) & !	;@E:D ;@E:D ;@E:D ;@E:D ;@E:D
) (- M -	
,\$ #' #" \$&## * &' #"	55AD6;@9FA *
(&#! " (#!\$ ((- !</th><th>55AD6;@9FA</th></tr><tr><th>''#\$&#((#" F?AEB:7D5397@E A;>;@EG33F,A@,</th><th>& & 5⊰3⊞</th></tr></tbody></table>	

;53B@81;381@3B5@AB38AD1;C5AI

#"" (#" (&

+ 9@=7

@AD\$7DFAD73%E7 F.7 7%5F253>5A@075FA@A8F.7 5A;>;F;E @757EE3DK FA 3557EE F.7 F7D?; @3>4%45= G@E5D71; @ F.7 E5D71 E F: 3F88EF7@ F: 7 5AH7D I; F: F: 7 4AJ F: 3F5A@B; @EF: 7 F7D?; @3>4>A5=

(855;53B@81;3>==53B>=9A?>;1@BG9=45?5=45=B

K6A;@973/5FD53>5A@@75FA@;F;E;?BADB@FFA5A@@75F3;EAF;79DAG@6;@9BA;@F;?F77D?;@>4x35=4AJ # E5D7IE;FDAG9:EG;B437 5A@6C5FADEI;F.F.797@7D3>9DAG@6;@9,≽@7A8F.7EKEF7?

%@F.7 7JF7D@3>4A6K A8F.7 5A:>F.7D7 ;E 3 9DAG@5;@9 BA;@F # E5D7I F:3F3>AI FA 7 @ECD7 7 CCGBAF7 @F:3>FK 47FI 77 @F:7 H3+H7 3 @6 F:7 97 @7 D3>9 DAG@6;@9 ≽@7 A8F. 7 EKEF7? 5A@975F;@9 F. ;E BA;@FF. 7 D79G3;F,A@A8F. 7 \$ EB @63106 F. 3F;? BAE7 FA H7D8K F. 7 70G;BAF7 @F3>FK A8F.7 737?7@FE;@5x26676;@3 BAF7@F3*X7JB*AE;H7 7@+LDA@?7@FF.7?3J;?G?D7E;EF3@5747FI77@F.773??7@FE?GEF47 T ·F 9G3D3@776

FF: 7 7 @6 A8F: 7 7 \$75FE;53>1 ;D;@9 ;F;E @757EE3DK FA D73EE7? 4 \$7 F: 7 5AH7D A@F: 7 4AJ 5: 75=; @9 F. 7 5ADD75FBAE; FA@@9 A8F. 7 E73>A53F76 ;@F:75AH7DE73F3@683EF7@@9F:7 # E5D7IEI;F:3FADDC57A8 [\$?

75FD53>I;D@9? GEF47 6A@7 8A-3AI;@9F.7;@EFD05FA@EA8F.7 D0-7E;@5A? B-33@57 I;F.**. _ EF3@63105E

: 3D35F7DEF5E A8F. 7 53477 E 5A@@75F3477 8ADI ;D@9 3D7 ;@6;53F76 ;@F. 7 F3477 47-AI

C=3B⊳=	12;5 A53B9≽=			
%B7D3F;@9HAxB97534x7E5A@975F;A@	?3J ??\			
A@@75F;A@8AD;@77D@8>9DAG@6;@9BA;@F	?3J??\			
A@@75F,A@8AD7JF7D@8>7OG;BAF7@F;3>9DAG@6;@9BA;@F	?3J ??\			

347/E8ADI; D.@9 ? CEF47 @A@3D? ACD76 5347/E1 ;F. 7JF7D33>5AH7D; C29 E. 73F. 3 C6 ? CEF47 EG; B47 8ADCE7 ; C7 CHDA@? 7 CFE1 ;F. F? B7D3FCD7E M 8ADH3+17E7;F.7DI;F.\$ AD, E73>E AD8DA? M 8ADHB⊁H7EI;F.\$"E73>E SDA? MFA ΜFA 347 953 @6E 1 : ;5: ? GEF47 AD67 D76 E7 B3 D3F7 *K E77 B3 D39 D3B:

3>AI FA GE7 5347EI ;F. 7JF7D03>6;3? 7F7D47F 77@ 306 ??

;53 B@361; 4917 @< A

D5 @C @ B6CA5 1=4 AE 9388 >66 D>;B175 ?51:

+ BEFD73? A8735: H3+17 3@3BBDABD3F782E7 ? 3J J @355AD5;@ FA AD3 BDAF75F;H7 ? AFADE1 ;F5: I ;F. E. ADF5;D5(G,F3@6 F. 7D*3>;@EF3@5@7ACE FD2B3;@ 3E E. ADF5;D5(G,FBDAF75F;A@? CEF475A@2*5F76 *: 75CFA88BAI 7DA8F;782E7 ? CEF5ADD7EBA@5 AD7J5776 F. 7 E. ADF5;D5(G,F3DD7@FA8F;7 ECB5K EACD57 *: 78CE7 ADF;7BDAF75F;H7 ? AFAD? CEF47 B3576 AGF;67 F. 763@97DAGE 3D73 ADF;7K ? CEF47 BDAF75F;76 I ;F. 3@7JBAE;A@BDAA85AH7D@

@AD\$7DFA E3879G3D\$ F.7 7≠75FDA@5 67H57 FA I:;5: F.7 H3+77;E 5A@@75F76 F.7D7;E 3 BDAF75FA@5;D3GF;@F.7 5A;> F.3 FD76G57E HA+7397 B73=E I:;5: 53 @A55GDI: 7 @;@6G5B@57E 3D7 E];5: 76 A88

*: 7 F3457 E: AI E F: 7 FKB7 A880E7 D75A?? 7 0676 355AD5;00 FA F: 7 0A?;00>HA+R97 A8F: 7 H3+17 3 06 FA F: 7 H3+67 A8F: 7 HA+R97 B73=E D76C5FA0

A;>FKB7	\$A?;@S>HA+B971,2	(317650007@F12	&53>< < 5=454 ?@36CA5 381@3B5@AB3BA < 549C< B&5 ;17 133>@9=7 B- " / 0	#3J;?G?HA¥B97 HB×G7GBA@EI;15:A88 1,2) (BBD7EEAD5;155GF
					*D3@E;7@FHA+B97
					EGBBD7EEAD 4;6;D75F;A@3>
&					
&					

"((#"#\$#(M#\$&('# "# * * ' '\$

45=B36981B9⊳= 3>45

D

D*KD2

& (&'()&* ' " \$ & #&! " ' # \$ #(#\$ & ('# "# * * '

\$ @ AAC @ 4 @ ? A J ? % H3:67E A4/B;@76 I ;F. H,E5AE;KK 5) F3F M

'\$ '\$&

"&. N\$##'(#"

		"%- (*%\$								
) &%%"	&^	&^	^ *	۸ *						
		+(,)	%\$ (8	k						
))))										
))))										
))))										
))))										
* *										
* *										
(!										

"&. N\$#'(#"

				" % -	(* %\$	
) &%%"	&^	&^	^ *	^ *	&^ *
				+(,) %\$	(&	
)))					
)))					
)))					
			-	-	-	-	-

"&. N\$#'(#"

	"%- (* %\$							
) &%%"	&^	&^	^ *	۸ *				
		+(,)	×\$ (8	<u>k</u>				
)))								
)))								
)))								
))))								
* *								
* *								
(!								

				" %-	(* %\$	
) &%%"	&^	&^	^ *	^ *	&^ *
				+(,) %\$	(&	
)))					
)))					
)))					

'\$

"&. N\$#'(#"

	"%- (* %\$							
) &%%"	&^	&^	^ *	^ *				
	+(,)%\$(&							
))))								
))))								
))))								
))))								
* *								
* *								
(!								

"&. N\$#'(#"

				" %-	(* %\$	
) &%%"	&^	&^	^ *	^ *	&^ *
				+(,) %\$	(&	
)))					
)))					
)))					

'\$

"&. N\$#'(#"

		" %-	(*%	\$
) &%%"	&^	&^	۸ *	۸ *
		+(,)	%\$ (8	<u>k</u>
)))				
)))				
))))				
)))				
* *				
* *				
(!				

		" %-	(* %\$	
) &%%"	&^	&^	^ *	^ *	&^ *
		+(,) %\$	(&	
))))					
))))					
))))					

\$& '')& '	'\$ '\$ &	'\$	'\$	'\$
# 3 J BD7 EECD7 ;@& BADRE				
# 3J BD7EECD7;@* ≽@7 I;F:;@77D@3>6D3;@397				
# 3J BD7EECD7;@* ≽@7 I;F: 7JF7D623>6D3;@397				
#;@B;>AF;@9 BD7EECD7 " # ([[[[
3J B;>AF;@ BD7EEGD7 " # (

"#(?;@? G? B;AF;@ BD7EEGD7 53@47 F.7 AI 7DD3@97 H3-S7 3F-AI 8AI E D3F7E 4 GFI ;F. ; ;9: 7D8AI D3F7E F.7 ; ;9: 7DH3-S7 ;E @ 7676 "#(;8F.7 H3+17 AB7D3F7E I ;F. ; ;9: 7DBD7EEGD7 E;F;E @ 757EE3DK FA GE7 F.7 H7DE;A@I ;F. 7JF7D@3>B;AF3@5 D76G576 BD7EEGD7 %F.7D ;E7 F.7 H3+17 I ;F. ;@7D@3>B;AF3@5 BD7EEGD7 D76G5;@ H3+17 I ;F. 43D8,J76 36-GEF? 7@ 53@47 AD57D76

66 F: 7 ≠7 FF7 D. FA F: 7 ;67 @F;853 F;A@5A67 FA AD57 DF: ;E ABF;A@ E77 B3D A@E;67 DF: 3F 4K 366;@9 F: 7 BD7 EEGD7 D76G5;@9 H3 +17 F: 7 AH7 D3 > 6;? 7 @E;A@E ;@5D73E7 ?? ;@: 7;9: F

!,!)! #+ & ('\$ '\$	&			'\$				'\$				'\$			
1.0									&())+()						
?>>; 00 ?5		3F	43D	ЗF	43D	ЗF	43D	3F	43D	ЗF	43D	3F	43D	3F	43D	3F	43D
))))	1.2·@														"#("#(
%F.7DEBAA≵E	299,922																

"#(8ADF.7) & ! H3+17 F.7E7 H3×G7E 3D7 F.7 E3? 7 8AD)) BBAA≽E

'E9B389⊨7B9<<5A

*:7 H3-57E;@5;53F76 D787DFA 3 EA-7@A;6 H3+7 I AD=;@9 I ;F. B;AF;@9 BD7EECD7 A8 43D I ;F. ?;@7D3>A;>3F3 F7? B7D3FCD7 A8 M 3F HE5AE;FK A8 5) F3@6 I ;F. & 3@6 * 5A@975F;A@E

*:77@7D9;L;@93@6677@7D9;L;@9F;?7E3D7A4F3;@763FF;7 BD7EECD7HBD3F;A@I:;5:A55CDEA@F;7>@7E

\$ #(" " & "

)&! H3+H7E3D73H3;≫34>7I;F.B;>AF;@93@66D3;@3974AF; ;@F7D@>>3@67JF7D@>

*:7 H7DE;A@I;F. 7JF7D23>6D3;@397 3>AIE 8AD3:;9:7D435= BD7EECD7 A@F.7 ACE7F

(!'丨 /< A0	\$(0\$ (\$ (O\$ (
)&!)&(!		
)&!		
)&!		
)&!		

* / & % "	&×99 3E	E 7? 4≭
, , , ,	•	/
\$* (\$ "&"%* \$.* (\$ " (\$	\$%	/)
\$* (\$ "&"%* \$ \$* (\$ " (\$	\$%	\$%
.* (\$ "&"%* \$.* (\$ " (\$	/)	/)
.* (\$ "&"%* \$ \$* (\$ " (\$	/)	\$%

'\$

, Bx29 # J 8AD7JF7D@3>B;AF - Bx29 # J 8AD7JF7D@3>6D3;@

, B-599 # J 8AD7JF7D63>B;>AF - B-599 # J 8AD7JF7D63>6D3;@

, Bx99 # J 8AD7JF7D@3>B;AF - Bx99 # J 8AD7JF7D@3>6D3;@

D*KD2

В

a

P.L. | T

LX 🕷 b

13: ?@AAC@ D1;D5 9=3>@>@B54 >= ;9=5 \$ >?B>=

)&! 3@6) &! H3+17E3D73H3;>34-7GBA@D7CG7EFI;F.435=BD7EECD7H3+17;@5ADBAD3F76A@>@7& *:;E;E@757EE3DKFAA4R3;@F.7B;>AF;@9BD7EECD7I:7@F.75A@4DA>H3+17;@D7EFBAE;FA@:3EF.7>@7& 5A@075F76FAF:7*BADFEBAA=E)))) * * ``:75D35=;@9BD7EECD7;EA843DI;F.3 ?;@?G?8AID3F7A8>?;@

= B85 D5@99>= B85?9>B9=79A1;E1GA9=B5@e1;

"#(F: 7 435=BD7EEGD7 H3+17 53 @7E47 GE76 3E 5: 75= H3+17 4753GE7 ;F6A7E@7E3EEGD7 F: 7 E73>

66 FA F. 7 ;67 @F.853 F,A @5A67 8ADF. ;E DY CG7 EF E77 B3 D39 D3 B:

>@'\$ >=;G F: 7 435=BD7EECD7 H3+17 53 @47 3£A 67;+H7D76 E7B3D3F7 X 3@5;F53 @47 73E;X? AG@76 A@;3@7 & A8F. 7 ? 3;@5A@4Da>H3+17 E= 8AD5A67 FA AD57DF: 7 435=BD7EECD7 H3+17

'\$

B;:AF3\$ 3KE ;@77D@5> - B:Q9 # J 8AD7JF7D@5>6D3;@

*:7 5 COH7 D787 DE FA F.7 BD7 EECD7 6 DAB 4A6K B3 DFA @K I;F. 435=BD7 EECD7 H3 + 17 7 @7 D9;L76 FA I:;5: F.7 BD7 EECD7 6 DAB A8 F.7 D787 D7 @57 EBAA>? CEF47 36676 E77 B3 D9 D3 B:

#\$(#"'

>=B@; >6B85 < 19= A?>>; AB@: 5

- ;F. F.7 : 7-36 A8EB75;3>E;67 B-99E ;F;E BAEE;4-37 FA ;@FDA6C67 EFDA=7 5A@FDA=E ;@F.7 : 736E A8F.7 B;>AF76 HB>+17 EA 3E FA HBDK F.7 ? 3J;? G? EBAA>5-373D3 @57 AB7 @@9

*:;E EAGEFA@3>AI E 5A@EDA>A8F.7 8AI D3F7 8DA? F.7 BG? B FA F.7 35FC3FAD3@6 8DA? F.7 35FC3FADFA F.7 AGE7F A4F3;@@9 3 6AG4 7 36-CEE347 5A@EDA>A@F.7 35FC3FAD

66 F. 7 ≠7FF7D FA F. 7 ;67 @F,853F,A@5A67 FA D7 OG7 EFF: ;E 67H,57 E77 B3 D39D3B:

6;?7@E;A@E;@??

	'\$ '\$&	'\$	'\$	'\$

>=B@;>6B85 < 19= A?>>; A896B9=7 A?554

KB-35;@93# () FKB76AG4-78AI 5A@FDA>H3+H747F77@F7B;AF EA7 @A;6 H3+17 3 @6 F.7 ? 3;@6;EH24GFAD F.7 B;AF76 8AI D3F7 53 @47 5A @ DA>76 3 @ F. 7 D78AD7 F. 7 5: 3 @ 7 AH7 DE? AAF. @ TEE 53 @ 47 HB D76 66 F. 7 ≯ FF7D FA F. 7 ;67 @F853 F,A@5A67 FA DY OG7 EFF ;E 67 H,57 E77 B3D39D3B:

'\$

6;?7@E;A@E;@??

	'\$ '\$&	'\$	'\$	'\$

'C2?;1B5E9B8B8@BB5>=;9=5\$

F;E BAEE;4>7 FA;@FDA6G57 3 EG4B>3F7 I;F. 3 D7 EFD;5FADA@>;@7 & 47ff 77@F.7 B; AFEA7 @A;6 HB + 17 3 @6 F.7 ? 3; @6; EFD4 GFAD D7EFD;5FADQ 8AD) & !)&! 7)&!) & (! D7 EFE,5FADQ 8AD)&!

* A D7 CG7 EF; @5:4967; @F. 7 5A67 B3D

8AD)&! 8AD)&!)&(!)&!3@5)&! \$

\$

6;?7@E;A@E;@??

'\$ '\$&	'\$	'\$	'\$

D

D*KD2

D*KD2

D

D*KD2

"!#)"(" '\$ #* & ! "' #"' 6;?7@E;A@E;@?? '\$. (! 3 '\$ & (! 75 260 (4)7 [4] b а (5) ĉe $(\overline{\oplus})$ A B 2) 270.5 232 ـ θ 182 ł 40 47 6 Φ ŧ 7 1) 19.7 -- Ø6 - 39 -- 230 41.5 - 340 - 41.5 - 423 '\$ 1 ('\$ '\$ (!) A7 @A:6 ! BAE;F,A@8AD H7DE;A@E) 199.7 -3@5* 130 (6)(6)22.5 3 (+)(-)79.4 **T** ۲ Φ Φ ⊥ 197 A B 0 \bigcirc "#(8ADAH7D3≫6;?7@E;A@E1;F.0 ABF;A@ 8,J76 36 CEEP? 7 @FBD7 EECD7 D76C5; @9 H3 +17 5A @E;67D3 @ ;@5D73E7 A8 ??;@:7;9:F "#(8ADE;67 BADF5347 93 @6 E77 B3D39D3B. # AG@F;@9 EGD\$857 I ;F: E73;>@9 D;@9E - 211.5 -JB;AE;A@BDAA85A;> A;>D7? AHB>EB357 # 3 @ G3>AH7 D0 67 4AAFBDAF75F76 ABI = 41 @ 6-@ 2>BB " 1=4 * A51;A 8AD4≽@5 D@ @2F 6;? 7 @EA@E EB3@63105 8AD\$ " E73£ E77 B3D E5D7IE)% 3EF7@@9A8E;@97H8⊁17) # J *7D?;@3>8ADEGBB37?7@33DK73DF.5A@@75F;A@ *;9: F7 @ @ FADOG7 \$? E5D71 E + BB7DBADF8AD5347 9-3 @6 *: D736EA8? AG@F;@9:A77E # J 34,379,33@6 GBB7DBADFE:AI@ *A 47 AD67D76) 73≽@9 D;@9E %(FKB7 J E: AD7 E7B3D3F7*K E77 B3D39D3B: %(_**FK**B7 E: AD7 J

D*KD2

!#)"(" ')&

•

! ") #* && '

;9=4 **@**=7 =CB

*:7?75>D,@9@5FBDAF75FEF;7EA;7@A;6FG478DA?3F?AEB:7D,5 397@FE3@5;EA3F7EF;7?3@G3>AH7DD;678DA?355;67@F3>AB7D3F;A@E *:7D,@9@3F;EF;9:F7@76A@3F:D7367683EF7@7DF:3F=77BEF;75A;> ;@;FEBAE;F;A@7H7@1;F:ACFF;7D;@9@3F

* A 3557EE F.7 ? 3 @C3>AH7 DD67 >AAE7 F.7 D;@9 @CF3 @6 D7? AH7 ;F F.7 @D73EE7? 4>7 : 3 @6 F.9: F7 @@9 G@F;>;FEFABE

3B2D1 B5 B8 5 < 1=C1; >D5 @294 5 1; E 1 GA 1=4 >=; G E 988 =>= A?1 @9=7 B>; A AC99 2; 5 6-@CA5 9= (, 1@1A 3; 1AA99554 # AD7; @AD2 3F, A @ A @E387 GE7 A8 * . 538 EE; 876 5A? BA @7 @E 3D7

BDAH,676;@F.7;@EFD25F,A@?3@C3>3>3KE ECBB>;761;F.F.7H3+77

5D5@<1=C1;>D5@#5

. .

...

...

34,7 9,3,066 E? GEF47 AD57D76 E7B3D3F7:K GB:A? 3F,5 A87DE EA? 7 FKB7E A8534,7 9,3,066 E1 ;F. F.7 8A;AI ;@ 873FD7E

NH7DE;A@8AD@A@3D?A0D76534377JF7D@3>E73>A@F:753437EG;B4378ADQ [??53437E N355AD6;@9FA * . 6;D75F;H757DF;876 N5343793@6;?3F7D3>@5=7>4D3EE ND6447DF;B?3F7D3>E;35A@7 N3?4;7@FF??B7D3FGD7D3FGD7D3@97S[S NBDAF75F;A@679D77& &

7J \$)

5A @ @ 75F, A @ FKB7; @ AD67 DFA 7 @ EGD7 &

EGF347 8AD

&

Р

* A AD\$7D ===== 7 67550; BF; A@3 @6 F: 7 5A67 A8F: 7 H7DE; A@5: AE7 @8DA? 3? A@9 F: AE7 =====647.4

5A3 @@?B9⊳=

>45

, 7DE;A@I;F. # J)% ? 3-77 F. D736 EG;F34-77 8AD5A;>EI;F. * 3@6) 5A@275F;A@FKB7E;F;E EG3B8>76 7CC;BB76 I;F. E;>5A@7 E73> F. 3F? GEF47 3EE7? 4-76 471F 77@F. 7 534-77 9-32@6 3@6 F. 7 5A;> 5AH7D EA 3E FA 7@ECD7 & & BDAF75F;A@679D77

5A3@9?B9⊳=

>45

, 7DE;A@I ;F. = +\$ \$?37 F. D736 EG;F347 8AD5A;E I ;F. * 5A@@75F;A@FKB7 ;@AD57DFA 7@ECD7 & & BDAF75F;A@ 679D77 *: 75CEFA? 7D? CEF3BB;K"% ** O P F. D736;A5=7DAD E;? ;3D47FI 77@F. 7534;79;3;@55A@@75F;A@F. D736;3;@6 F. 75A;> 5AH7D

5A3 @9?B≫= >45

5A3 @9?B≫=

70E;A@I;F

5A;ÆI;F.́*

3@6 F.7 5A;>5AH7D

X\$&*

\$)

BDAF75F,A@679D77 *:75GEFA?7D?GEF3BB*K "% ** O

F. D736;A5=7DADE;?; 3D47F 77@F 7 5347 93@ 5A@@75F,A@F D736

>45

, 7DE;A@I ;F. # J)% ? 37 F. D736 EG;B347 8AD5A;2E I ;F.) 5A@275F;A@FKB7 ;F;E E3BB;376 7OG;BB76 I ;F. E;35A@7 E73> F. 3F ? GEF47 3EE7? 476 47ff 77@F. 7 5347 9:32@5 3@5 F. 7 5A;>5AH7D EA 3E FA 7 @ECD7 & & BDAF75F;A@679D77

-&))

+ E7 ? ;@7D3>A;>43E76 : K6D3C3;58 & G6E "AD # FKB7 355AD5;@ FA) % ADF. 7E7 & G6E CE7 \$ (E73 ± 5A67 \$ AD8G6E (FKB7 B: AEB: 3F7 7E7DE CE7 & # E73 ± 5A67 , ADF. 7 CE7 A8AF. 7D8G6 FKB7E EC5: 3E B73E7 5A @ CGF ACDF75: @53>67B3DF? 7 @ F + E;@ 8G6E 3FF7? B7D3FCD7E : ;9: 7DF. 3 @ M 53CE7E 3 & BE7D679D363F,A@A8F. 7 & G6 3 @ 6A8F. 7 E73 ± 5: 3D35F7DEF;5E *: 7 & G6 ? CEF47 BD7E7D476 ;@;FE B: KE;53>3 @ 5: 7? ;53>5: 3D35F7DEF;5E

"'((#"

*:7 H3+17E 53 @47 ;@EF3>76 ;@3 @K BAE;F,A@I ;F. ACF;? B3;D;@9 5ADD75FAB7D3F,A@

, 3 ⊁ /7 83 EF7 @ @9 F3=7E B-3557 4 K? 73 @E A 8 E5 D7 I E A DF;7 DA 6E ≫ K;@9 F: 7 H3 ⊁ /7 A @3 ≫ B B76 E 2028 57 I ;F. H3 ∞ 57 E A 8 B-3 @ DFK 3 @6 E? A AF: @7 EE F: 3 F3 D7 7 C C 3 ≫ FA A D 4 7 FF7 DF: 3 @ F. A E7 ;@; 5 3 F7 6 ;@ F: 7 6 D3 I ;@ 8 F: 7 ? ;@? G? H3 ∞ 57 E A 8 B-3 @ DFK A D E? A A F: @7 EE 3 D7 @ A F? 7 F 8 ⊂ 6 ≠ 7 3 = 3 9 7 E 4 7 FI 77 @ H3 ⊁ 7 3 @ 6 ? A C @F;@9 E C 028 57 53 @ 7 3 E;★ A 55 C D

')\$(' E77 53₿≯49G7

	•			'\$	'\$	'\$
* KB7 I ;F. D73DBAD7E	&# #	&#</td><td></td><td>&#</td><td>&#</td><td></td></tr><tr><td>* KB7 I ;F: E,67 BAD7E</td><td>&# # "</td><td></td><td>&# "</td><td>&# "</td><td>&# "</td><td>&# "</td></tr><tr><td>& * BADFE 6;? 7 @E;A @E . / BADFE 6;? 7 @E;A @E</td><td>X)&</td><td>X) &</td><td>X)&</td><td>X)& X)&</td><td>X) & X) &</td><td>] X) & X) &</td></tr></tbody></table>				

"# () G4B-3F7E FA 47 AD37D76 E7B3D3F7K 6A @AF5A@B;@@7;F:7D3x6?;@G? @AD? 39@7E;G? 3F3:;9:7DD3F7 F:3@F:7 H3x67 3*AI 76 4K @AD? E 355AD5;@9 FA * . 6;D75F;H7 8AD53F79ADK

*:7 GE7D? GEF13=7 53D7 3@6 ? 3=7 3 5A? B7/17 3EE7EE? 7@FA8F:7 ;9@F,A@DE= F:3F53@A55GD&DA? F:7 D7:3F,H7 GE7 ;@BAF7@F,3*K 7JB:AE;H7 7@HDA@/7@FE

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 600/113 ED

DSH* LEVER OPERATED DIRECTIONAL CONTROL VALVE

 MOUNTING SURFACES

 DSH3
 ISO 4401-03 (CETOP 03)

 DSH5
 ISO 4401-05 (CETOP 05)

p max (see performances table)Q nom (see performances table)

OPERATING PRINCIPLE

- " The DSH * are lever operated directional control valves, available with 3 or 4 ways and with several types of interchangeable spools (1).
- ", The valve body (2) is made with high strength iron castings provided with wide internal passages in order to minimize the "ow pressure drop.
- ", They are available with 2 or 3 positions with return spring or mechanical retention.
- ", On DSH3 version is possible to rotate the lever (3) by 180° compared with the standard position, depending on installation requirements (par. 7).

PERFORMANCES (with mineral oil of viscosity of 36 cSt at 50°C)

		DSH3	DSH5	
Maximum working pressure: - P - A - B ports - T port	bar	350 210	320 160	
Nominal flow rate	l/min	75	150	
Ambient temperature range	°C	-20 /	+50	
Fluid temperature range	°C	-20 /	+80	
Fluid viscosity range	cSt	10 ÷ 400		
Fluid contamination degree		according to ISO 4406	6:1999 class 20/18/15	
Recommended viscosity	2	5		
Mass	kg	2.1	4.2	

DSH*

1 - IDENTIFICATION CODE

2 - SPOOL TYPE

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - PRESSURE DROPS p-Q (values obtained with viscosity 36 cSt at 50 °C)

4.1 - DSH3

VALVE IN ENERGIZED POSITION

	FLOW DIRECTION					
SPOOL TYPE	ΡA	ΡВ	ΑT	ВT		
	CURVES ON GRAPH					
S1, SA1, SAK1	2	2	3	3		
S2, SA2, SAK2	1	1	3	3		
S3, SA3, SAK3	3	3	1	1		
S4, SA4, SAK4	4	4	4	4		
TA, TAK	3	3	3	3		
TA02, TAK02	2	2	2	2		
TA23, TAK23	3	3				

VALVE IN DE-ENERGIZED POSITION

	FLOW DIRECTION					
SPOOL TYPE	ΡA	ΡВ	ΑT	ΒТ	ΡТ	
	CURVES ON GRAPH					
S2, SA2, SAK2					2	
S3, SA3, SAK3			3	3		
S4, SA4, SAK4					3	

4.2 - DSH5

∆p [bar] 22 6 Q [l/min]

VALVE IN ENERGIZED POSITION

	F	LOW DI	RECTIO	N		
SPOOL TYPE	ΡA	ΡВ	ΑT	ВT		
	CURVES ON GRAPH					
S1, SK1	2	2	1	1		
S2, SK2	3	3	1	1		
S3, SK3	3	3	2	2		
S4, SK4	1	1	2	2		
TA, TAK	3	3	2	2		

VALVE IN DE-ENERGIZED POSITION

	FLOW DIRECTION					
SPOOL TYPE	ΡA	ΡВ	AT	ΒТ	ΡТ	
	CURVES ON GRAPH					
S2, SK2					5	
S3, SK3			6	6		
S4, SK4					5	

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions.

The values have been obtained according to ISO 6403 norm, with mineral oil viscosity 36 cSt at 50 °C and filtration ISO 4406:1999 class 18/16/13.

SPOOL TYPE	CURVE	
	ΡA	ΡВ
S1, SK1, SA1, SAK1	1	1
S2, SK2, SA2, SAK2	1	1
S3, SK3, SA3, SAK3	1	1
S4, SK4, SA4, SAK4	2	2

SPOOL TYPE	CURVE	
	ΡA	ΡB
TA, TAK	1	1
TA02, TAK02	1	1
TA23, TAK23	1	1

5.2 - DSH5

SPOOL TYPE	CURVE	
	ΡA	ΡB
S1, SK1, SA1, SAK1	1	1
S2, SK2, SA2, SAK2	1	1
S3, SK3, SA3, SAK3	1	1
S4, SK4, SA4, SAK4	2	2

SPOOL TYPE	CURVE		
	ΡA	ΡВ	
TA, TAK	1	1	

NOTE: Values in the graphs are relevant to the standard valve. The operating limits can be considerably reduced if a 4-way valve is used with port A or B plugged.

6 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; valves with mechanical detent must be mounted with the longitudinal axis horizontal.

Valve fixing is by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity and/or smoothness are not met, fluid leakage between valve and mounting surface can easily occur.

DSH*

7 - OVERALL AND MOUNTING DIMENSIONS DSH3

NOTE: The valve is supplied with the hand lever oriented in a perpendicular position with respect to the mounting surface (as indicated in the above drawing). For installation needs the hand lever can be oriented by the user directly at 180° to the standard position, simply by unscrewing the lever and re-screwing it in the desired position.

DSH*

8 - OVERALL AND MOUNTING DIMENSIONS DSH5

9 - SUBPLATES (See catalogue 51 000)

	DSH3	DSH5
Type with rear ports	PMMD-AI3G	PMD4-AI4G - 3/4Ž BSP threaded
Type with side ports	PMMD-AL3G	PMD4-AL4G - 1/2Ž BSP threaded
P, T, A and B threads	3/8Ž BSP	

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 605/113 ED

DSH3L LEVER OPERATED DIRECTIONAL CONTROL VALVE SERIES 10

MOUNTING SURFACE ISO 4401-03 (CETOP 03)

p max (see performances table)Q nom 60 l/min

OPERATING PRINCIPLE

- " DSH3L are lever (3) operated directional control valves, available with the more common types of spools (1).
- ", The valve body (2) is made with high strength iron castings provided with wide internal passages in order to minimize the "ow pressure drop.
- " They are available with 2 or 3 positions with return spring or mechanical retention.
- " Upon request we can supply these valves with zinc-nickel surface treatment.

PERFORMANCES (with mineral oil of viscosity of 36 cSt at 50°C)

Maximum working pressure: - P - A - B ports - T port	bar	350 210
Nominal flow rate	l/min	60
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree		according to ISO 4406:1999 class 20/18/15
Recommended viscosity	cSt	25
Mass	kg	1.4

1 - IDENTIFICATION CODE

2 - SPOOL TYPE

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - PRESSURE DROPS p-Q (values obtained with viscosity 36 cSt at 50 °C)

VALVE IN ENERGIZED POSITION

	FLOW DIRECTION					
SPOOL TYPE	ΡA	ΡВ	ΑT	ΒT		
	CURVES ON GRAPH					
S1, SK1	2	2	3	3		
S2, SK2	1	1	3	3		
S3, SK3	3	3	1	1		
S4, SK4	4	4	4	4		
TA, TAK	3	3	3	3		

VALVE IN DE-ENERGIZED POSITION

	FLOW DIRECTION					
SPOOL TYPE	ΡA	ΡВ	ΑT	ΒT	ΡТ	
	CURVES ON GRAPH					
S2, SK2					2	
S3, SK3			3	3		
S4, SK4					3	

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions.

The values have been obtained according to ISO 6403 norm, with mineral oil viscosity 36 cSt at 50 $^{\circ}$ C and filtration ISO 4406:1999 class 18/16/13.

SPOOL TYPE	CURVE		
	ΡA	ΡВ	
S1, SK1	1	1	
S2, SK2	1	1	
S3, SK3	1	1	
S4, SK4	1	1	

	SPOOL TYPE	CURVE	
		ΡA	ΡВ
	TA, TAK	1	1

6 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; valves with mechanical detent must be mounted with the longitudinal axis horizontal.

Valve fixing is by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity and/or smoothness are not met, fluid leakage between valve and mounting surface can easily occur.

DSH3L SERIES 10

7 - OVERALL AND MOUNTING DIMENSIONS

8 - SUBPLATES (see catalogue 51 000)

- Type with rear ports: PMMD-AI3G
- Type with side ports: PMMD-AL3G
- P, T, A and B threads: 3/8Ž BSP

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 610/112 ED

MOUNTING INTERFACE

PERFORMANCE RATINGS

(obtained with mineral oil with viscosity of 36 cSt at 50°C)

Maximum operating pressure: - P A B ports - T ports	bar	350 25
Nominal flow rate	l/min	75
Pressure drop p-Q	see par. 4	
Operating limits	see par. 5	
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	according to ISO 4406: 1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass: DSR3L-TA DSR3L-R DSR3H-TA	kg	1,1 1,2 1,2

DSR3 ROLLER CAM OPERATED DIRECTIONAL CONTROL VALVE SERIES 11

SUBPLATE MOUNTING ISO 4401-03 (CETOP 03)

p max **350** bar **Q** nom **75** l/min

OPERATING PRINCIPLE

- ", The DSR3* are roller cam operated directional control valves, available with 4 ways, with mounting interface according to ISO 4401 (CETOP RP121H) standards.
- ", The valve body is made with high strength iron castings provided with wide internal passages in order to minimize the "ow pressure drop.
- ", It is available in LIGHT (short) and HEAVY DUTY (long) versions, with 2 positions with return spring or with 2 positions with double mechanical command.
- " The roller of the valve operating device can be positioned at 90° with respect to the valve mounting surface, in order to achieve "exible installation.
- ", This type of valve can be used as a hydraulic stroke end for cylinders, speed selectors (not compensated), hydraulic safety devices, directional control of hydraulic axes.

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - SPOOL TYPE

- PRESSURE DROPS	p-Q	(obtained with viscosity 36 cSt at 50 °C	C)
------------------	-----	--	----

	FLOW DIRECTION				
SPOOL TYPE	ΡA	ΡB	ΑT	ВT	
	CURVES ON GRAPH				
DSR3L-TA	1	1	1	1	
DSR3L-R	1	1	1	1	
DSR3H-TA	1	1	1	1	

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values have been obtained according to ISO 6403 norm, with mineral oil viscosity 36 cSt at 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

SPOOL TYPE	CURVE		
	ΡA	ΡB	
DSR3L-TA	2	2	
DSR3L-R	1	1	
DSR3H-TA	1	1	

6 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; type R valves - without springs - must be mounted with the longitudinal axis horizontal. Valve fixing is by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity and/or smoothness are not met, fluid leakage between valve and mounting surface can easily occur.

7 - OVERALL AND MOUNTING DIMENSIONS

8 - VALVE FASTENING BOLTS

N. 4 fastening bolts SHC ISO 4762 M5x30 Tightening torque 5 Nm (bolts A 8.8)

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111

Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 610/112 ED

9 - SUBPLATES (see catalogue 51 000)

Type PMMD-AI3G with rear ports 3/8Ž BSP

Type PMMD-AL3G with side ports 3/8Ž BSP

41 620/112 ED

DSA* PNEUMATICALLY OPERATED DIRECTIONAL CONTROL VALVE

 SUBPLATE MOUNTING

 DSA3
 ISO 4401-03 (CETOP 03)

 DSA5
 ISO 4401-05 (CETOP R05)

p max (see performances table)Q nom (see performances table)

OPERATING PRINCIPLE

- " The DSA * are pneumatically operated (1) directional control valves, available with 3 or 4 ways with several interchangeable spools (2) and with mounting interface according to ISO 4401 (CETOP RP121H) standards.
- ", The valve body (3) is made with high strength iron castings provided with wide internal passages in order to minimize the "ow pressure drop.
- ", It is available with 2 or 3 positions with return spring, or with 2 positions with mechanical retention.
- ", The Y external drain is available (standard) for the ISO 4401-05 (CETOP R05) size and it must be connected when there is backpressure higher than 25 bar on the T port.

PERFORMANCES (with mineral oil of viscosity 36 cSt at 50°C)

		DSA3	DSA5	
Maximum working pressure: - P, A, B ports - T port without Y external drain - T port with Y external drain (available for DSA5 only)	bar	350 25 -	320 25 320	
Piloting pressure: - min - max	bar	4 12	4,5 12	
Nominal flow rate	l/min	75	120	
Ambient temperature range	°C	-20 / +50		
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt	10 ÷ 400		
Fluid contamination degree	ŀ	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	cSt 25		
Mass: single operator valve dual operator valve	kg	1,3 1,7	3,2 4,0	

1 - IDENTIFICATION CODE

2 - MOUNTING INTERFACE

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.
4 - SPOOL TYPE

Туре S *:					
2 operations - 3 positions					
with spring centering					
A B					
a – Malo b b b b					
S2 -					
s4					
S5 - XIIIIII					
S6					
s7 - MARTIN					
S8 -					
S9 - TATEST					

Type **RK**: 2 operations - 2 positions with mechanical retention

1 operation side B 2 positions (central + external) with spring centering

Type **TA**: 1 operation side A 2 external positions with return spring

Type **TB**: 1 operation side B 2 external positions with return spring

Besides the diagrams shown, which are the most frequently used, other special versions are available: consult our technical department for their identification and operating limits.

5 - PRESSURE DROPS $p\mbox{-}Q$ (values obtained with viscosity 36 cSt at 50 °C) 5.1 - DSA3

For pressure drops between A and B lines of spools S10, S20, S21, S22 and S23, which are used in the regenerative diagram, refer to curve 5.

	FLOW DIRECTION			
SPOOL TYPE	ΡA	ΡB	ΑT	ВT
		CURVES ON GRAPH		
S1, SA1, SB1	2	2	3	3
S2, SA2, SB2	1	1	3	3
S3, SA3, SB3	3	3	1	1
S4, SA4, SB4	5	5	5	5
S 5	2	1	3	3
S6	2	2	3	1
S7, S8	4	5	5	5
S9	2	2	3	3
S10	1	3	1	3
S11	2	2	1	3
S12	2	2	3	3
S17	2	2	3	3
S18	1	2	3	3
S19	2	2	3	3
S20	1	5	2	
S21	5	1		2
S22	1	5	2	
S23	5	1		2
TA, TB	3	3	3	3
TA02, TB02	2	2	2	2
TA23, TB23	3	3		
RK	2	2	2	2
RK02	2	2	2	2
RK1, 1RK	2	2	2	2

PRESSURE DROPS WITH VALVE IN ENERGIZED POSITION

PRESSURE DROPS WITH VALVE IN DE-ENERGIZED POSITION

	FLOW DIRECTION				
SPOOL TYPE	ΡA	ΡВ	ΑT	ВT	ΡT
		CURV	ES ON (GRAPH	
S2, SA2, SB2					2
S3, SA3, SB3			3	3	
S4, SA4, SB4					5
S5		4			
S6				3	
S7, S8			6	6	5
S10	3	3			
S11			3		
S18	4				
S22			3	3	
\$23			3	3	

DSA*

5.2 - DSA5

PRESSURE DROPS WITH VALVE IN ENERGIZED POSITION

	FLOW DIRECTION			
SPOOL TYPE	ΡA	ΡB	AT	ΒТ
	CURVES ON GRAPH			
S1, SA1, SB1	2	2	1	1
S2, SA2, SB2	3	3	1	1
S3, SA3, SB3	3	3	2	2
S4, SA4, SB4	1	1	2	2
S5	2	1	1	1
S6, S11	3	3	2	2
S7, S8	1	1	2	2
S9	3	3	2	2
S10	1	1	1	1
S12	2	2	1	1
S17, S19	2	2	1	1
S18	1	2	1	1
S20, S21				
S22, S23				
TA, TB	3	3	2	2
TA02, TB02	3	3	2	2
TA23, TB23	4	4		
RK	3	3	2	2
RK02	3	3	2	2
RK1, 1RK	3	3	2	2

	FLOW DIRECTION				
SPOOL TYPE	ΡA	РB	ΑT	ВT	ΡT
		CUR\	/ES ON G	RAPH	
S2, SA2, SB2					5
S3, SA3, SB3			6	6	
S4, SA4, SB4					5
S5		3			
S6				6	
S7					5
S10	3	3			
S11			6		
S18	3				
S22					
S23					

6 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values have been obtained according to ISO 6403 norm, with mineral oil viscosity 36 cSt at 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

6.1 - DSA3

SPOOL TYPE	CURVE	
	ΡA	ΡB
S1,SA1,SB1	1	1
S2, SA2, SB2	1	1
S3, SA3, SB3	2	2
S4, SA4, SB4	3	3
S5	1	1
S6	3	2
S7	3	3
S8	3	3
S9	1	1
S10	1	1
S11	2	3
S12	1	1

SPOOL TYPE	CURVE	
	ΡA	ΡB
S17	1	1
S18	1	1
S19	1	1
S20	4	4
S21	4	4
S22	5	4
S23	4	5
TA, TB	1	1
TA02, TB02	1	1
TA23, TB23	1	1
RK	1	1
RK02	1	1
RK1, 1RK	1	1

6.2 - DSA5

CURVE	
ΡA	ΡB
1	1
1	1
3 *	3 *
4	4
	CUF P A 1 3* 4

SPOOL TYPE	CURVE	
	ΡA	ΡB
S17		
S18		
S19		
S20		
S21		
S22		
S23		
TA, TB	2 *	2 *
TA02, TB02		
TA23, TB23		
RK		
RK02		
RK1, 1RK		

* **NOTE:** for spools S3 and TA, the curve has been obtained with a min. piloting pressure of 4,5 bar. If the minimum piloting pressure used is 5,5 bar, refer to the curve n° 1 (320 bar - 120 l/min).

NOTE: The values indicated in the graphs are relevant to the standard valve. The operating limits can be considerably reduced if a 4-way valve is used with port A or B plugged or without flow.

7 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal.

Valve fixing is by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity and/or smoothness are not met, fluid leakage between valve and mounting surface can easily occur.

8 - DSA3 OVERALL AND MOUNTING DIMENSIONS

DSA*

9 - DSA5 OVERALL AND MOUNTING DIMENSIONS

10 - SUBPLATES (see catalogue 51 000)

	DSA3	DSA5
Type with rear ports	PMMD-AI3G	PMD4-AI4G - 3/4Ž BSP threaded
Type with side ports	PMMD-AL3G	PMD4-AL4G - 1/2Ž BSP threaded
Threading of ports P, T, A and B	3/8Ž BSP	

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 630/112 ED

MOUNTING SURFACE

Maximum working pressure: - P A B ports - T port	bar	350 25
Piloting pressure - min - max	bar	15 (NOTE 1) 210
Nominal flowrate	l/min	75
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According t	o ISO 4406:1999 s 20/18/15
Recommended viscosity	cSt	25
Mass: single operation valve double operation valve	kg	1,3 1,7

DSC3 HYDRAULICALLY OPERATED **DIRECTIONAL CONTROL VALVE**

SERIES 11

SUBPLATE MOUNTING ISO 4401-03 (CETOP 03)

- **p** max (see performances table)
- **Q** nom (see performances table)

OPERATING PRINCIPLE

- " The DSC3 are hydraulically operated directional control valves, available with 3 or 4 ways with several interchangeable spools and with mounting interface according to ISO 4401 (CETOP RP121H) standards.
- " The valve body is made with high strength iron castings provided with wide internal passages in order to minimize the flow pressure drop.
- " It is available with 2 or 3 positions with return spring, or with two positions with mechanical retention.

NOTE 1: The piloting pressure must be higher than the counterpressure on T port, of 15 bar at least: to allow the cursor reversal at middle the piloting pressure has to lower quickly at 0 bar.

The piston return spring generates a minimum backpressure of 0.5 bar on the piloting line.

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V).

For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - SPOOL TYPE

Besides the diagrams shown, which are the most frequently used, other special versions are available: consult our technical department for their identification and operating limits.

4 - PRESSURE DROPS p-Q (values obtained with viscosity 36 cSt at 50 °C)

PRESSURE DROPS WITH VALVE IN ENERGIZED POSITION

	FLOW DIRECTION			N
SPOOL TYPE	ΡA	ΡВ	ΑT	ΒТ
	C	CURVES ON GRAPH		
S1, SA1, SB1	2	2	3	3
S2, SA2, SB2	1	1	3	3
S3, SA3, SB3	3	3	1	1
S4, SA4, SB4	4	4	4	4
TA, TB	3	3	3	3
TA02, TB02	2	2	2	2
TA23, TB23	3	3		
RK	2	2	2	2

PRESSURE DROPS WITH VALVE IN DE-ENERGIZED POSITION

	FLOW DIRECTION				
SPOOL TYPE	ΡA	ΡВ	ΑT	ΒТ	ΡT
		CURV	ES ON G	RAPH	
S2, SA2, SB2					2
S3, SA3, SB3			3	3	
S4, SA4, SB4					3

5 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values indicated in the graphs are relevant to the standard solenoid valve. The operating limits can be considerably reduced if a 4-way valve is used as 3-way valve with port A or B plugged or without flow. The values have been obtained according to ISO 6403 norm, with mineral oil viscosity 36 cSt at 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

SPOOL TYPE	CURVE	
	ΡA	ΡB
S1,SA1,SB1	1	1
S2, SA2, SB2	2	2
S3, SA3, SB3	1	1
S4, SA4, SB4	2	2

SPOOL TYPE	CURVE	
	ΡA	ΡВ
TA, TB	1	1
TA02, TB02	2	2
TA23, TB23	1	1
RK	3	3

NOTE: The values indicated in the graphs are relevant to the standard valve. The operating limits can be considerably reduced if a 4-way valve is used with port A or B plugged or without flow.

6 - INSTALLATION

Configurations with centering and return springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal. Valve fixing is by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity and/or smoothness are not met, fluid leakage between valve and mounting surface can easily occur.

7 - OVERALL AND MOUNTING DIMENSIONS

8 - VALVE FASTENING BOLTS

N. 4 fastening bolts SHC ISO 4762 M5x30 Tightening torque 5 Nm (bolts A 8.8)

9 - SUBPLATES (see cat. 51 000)

PMMD-AI3G Type with rear ports
PMMD-AL3G Type with side ports
Threading of ports P, T, A, B: 3/8Ž BSP

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

41 630/112 ED

DSB* SELF-REVERSING VALVE SERIES 10

 MOUNTING SURFACES

 DSB3
 ISO 4401-03 (CETOP 03)

 DSB5
 ISO 4401-05 (CETOP 05)

p max (see performances table)Q nom (see performances table)

OPERATING PRINCIPLE

- ", The DSB* are directional control valves with selfreversing spool and mounting interface according to ISO 4401-03 and 4401-05 (CETOP RP121H) standards.
- "The valves realize the reciprocation of the "ow direction when the "owrate stops in A or B line (f.e., when a cylinder reaches the end stroke). The reversing process is independent of the line pressure.

HYDRAULIC SYMBOL

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

		DSB3	DSB5
Maximum operating pressure on port P	bar	350 320	
Minimum allowed pressure	bar	50	60
Maximum flow rate	l/min	30	100
Minimum allowed flow rate	l/min	3	10
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Recommended viscosity	cSt	25	
Fluid contamination degree		according to ISO 4406:1999 class 20/18/15	
Mass	kg	0,9	2,8

41 640/112 ED

1 - IDENTIFICATION CODE

2 - PRESSURE DROPS p-Q (values obtained with viscosity 36 cSt at 50 °C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - INSTALLATION

The valves can be mounted in any position. Valve fixing is by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

If the minimum values of planarity and/or smoothness are not met, fluid leakage between valve and mounting surface can easily occur.

5 - OVERALL AND MOUNTING DIMENSIONS DSB3

DSB* SERIES 10

6 - OVERALL AND MOUNTING DIMENSIONS DSB5

7 - KNOB MANUAL OVERRIDE

The knob manual override CK allows to set the pressure of the relief valve without using shut-off valves.

8 - APPLICATION EXAMPLES

We suggest to use the circuits shown, connecting the A port with the rear chamber of the cylinder. In this way, with the start of the pump, the valve places itself, so as to retract the rod. To work properly the valve needs an area ratio of the cylinder chambers included between 1:1,25 and 1:2.

8.1 - Standard valve

8.2 - Valve with knob manual override

To set the system relief valve correctly, the self-reversing function must be inactive.

To do so, close the shut-off valve, start the pump, set the pressure relief valve and stop the pump. Then, open the shut-off valve and restart the pump.

To set the system relief valve correctly, the self-reversing function must be inactive.

To do so, completely unscrew the set screw then tighten the knob until it is at machanical stop. The spool is now clamped in position P B and A T. Start the pump, set the pressure of the relief valve and then stop the pump. Re-establish the working conditions of the valve, unscrewing almost completely the knob and screwing the set screw, until its point is aligned with the edge of the knob.

The valve is in normal working conditions when the knob is tightened and the point of the set screw is aligned with the edge of the knob.

Do not use the manual override when the valve is on, if it is necessary stop the pump.

8 - SUBPLATES (see catalogue 51 000)

	DSB3	DSB5
Type with rear ports	PMMD-AI3G	PMD4-AI4G - 3/4Ž BSP threaded
Type with side ports	PMMD-AL3G	PMD4-AL4G - 1/2Ž BSP threaded
Threading of ports P, T, A, B	3/8Ž BSP	-

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

42 200/110 ED

MOUNTING INTERFACE

CONFIGURATIONS (see Hydraulic symbols table below)

- ... Configurations •AŽ, •BŽ, •CŽ, •DŽ: 3-way, 2-position solenoid valves.
- ... Configurations •EŽ, •FŽ, •GŽ, •HŽ: 2-way, 2-position solenoid valves.

	-	
Maximum operating pressure	bar	250
Maximum flow rate	l/min	25
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass	kg	1,3

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

HYDRAULIC SYMBOLS

DT03 POPPET TYPE SOLENOID OPERATED DIRECTIONAL CONTROL VALVE SERIES 10

SUBPLATE MOUNTING ISO 4401-03 (CETOP 03)

p max 250 bar Q max 25 l/min

OPERATING PRINCIPLE

- " Direct-acting control valve with conical seat seal.
- " Two- or three-way versions with possibility of seal in both directions for two-way valves.
- ", Leakproof solenoids in oil bath, available in alternating and direct current supply voltages.

1 - IDENTIFICATION CODE

2 - CHARACTERISTIC CURVES (values obtained with viscosity 36 cSt at 50 °C)

	Ourve on graph	
valve Code	De-energized solenoid	Energized solenoid
DT03-3A	1	3
DT03-3B	2	3
DT03-3C	1	3
DT03-3D	2	3
DT03-2E	-	3
DT03-2F	1	-
DT03-2G	-	3
DT03-2H	1	-

Valve	Curve on graph	
DT03-3A	2	
DT03-3B	1	
DT03-3C	1	
DT03-3D	1	
DT03-2E	1	
DT03-2F	2	
DT03-2G	1	
DT03-2H	1	

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - ELECTRICAL FEATURES

4.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded onto the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation. The coil is fastened to the tube by a threaded nut, and can be turned 360° on its axis, compatibe with space available. The interchangeability of coils of different voltages is allowed within the same type of supply current: alternating or direct (DC / RAC).

VOLTAGE SUPPLY FLUCTUATION	± 10% Vnom
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 1)	In compliance with 2004/108/CE
LOW VOLTAGE	In compliance with 2006/95/CE
CLASS OF PROTECTION: Atmospheric agents (CEI EN 60529) Coil insulation (VDE 0580) Impregnation	IP 65 (NOTE 2) class H class F

4.2 Current and power consumption

The table shows the consumption values for the different coil type.

It is necessary to always use •DŽ type connectors (with rectifier incorporated) and RAC coils for alternating current supply.

Rectified current supply takes place by using a bridge rectifier bridge, externally or fitted within the •DŽ type connectors, between the alternating current source (24V or 110V, /50 or /60 Hz) and the coil.

Coil	Voltage [V]	Resistance at 20°C []	Current consumption [A]	Power consumption [W]	Coil code
12V-CC	12	5,6	2,14	25,7	1902050
24V-CC	24	21,8	1,10	26,4	1902051
24RAC	24	17	1,23	26	1902052
110RAC	110	420	0,23	22	1902053
220RAC	220	1750	0,11	22	1902054

4.3 Switching times

The values indicated refer to a flow rate of Q = 10 l/min, p = 210 bar working with mineral oil at a temperature of 50°C, a viscosity of 36 cSt and supply voltage equal to 90% of the nominal voltage.

	ENERGIZING	DE-ENERGIZING	
TIMES (±10%)	30 ms	50 ms	

4.4 Electric connectors

The solenoid valves are never supplied with connector. Connectors must be ordered separately. For the identification of the connector type to be ordered, please see catalogue 49 000.

5 - OVERALL AND MOUNTING DIMENSIONS

6 - APPLICATION EXAMPLES

42 250/110 ED

MDT POPPET TYPE SOLENOID OPERATED DIRECTIONAL CONTROL VALVE

SERIES 10

MODULAR VERSION ISO 4401-03 (CETOP 03)

p max 250 bar

Q max 25 l/min

MOUNTING INTERFACE

VALVE CONFIGURATIONS (see Hydraulic symbols table)

Configuration •SAŽ: utilized when line A flow is to be controlled. Configuration •SBŽ: utilized when line B flow is to be controlled. Configuration •DŽ: utilized when flows of lines A and B are to be controlled

PERFORMANCE RATINGS (working with mineral oil of viscosity of 36 cSt at 50°C)

Maximum operating pressure	bar	250	
Maximum flow rate in controlled lines Maximum flow rate in free lines	l/min	25 65	
Ambient temperature range	°C -20 / +50		
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt 10 ÷ 400		
Fluid contamination degree	According cla	g to ISO 4406:1999 ass 20/18/15	
Recommended viscosity	cSt	25	
Mass MDT-D MDT-SA/SB	kg	1,7 1,2	

OPERATING PRINCIPLE

- " Direct-acting control valve with conical seat seal, for maintaining hydraulic actuators in position.
- " Two-way execution, normally closed, with seal in both directions when solenoid is de-energized.
- ", Leakproof solenoids in oil bath, available in AC and DC supply voltages.

HYDRAULIC SYMBOLS

1 - IDENTIFICATION CODE

NOTE: The solenoid valves are never supplied with connector. Connectors must be ordered separately. To identificate the connector type to be ordered, please see catalogue 49 000.

2 - CHARACTERISTIC CURVES (values obtained with viscosity 36 cSt at 50°C)

3 - SUPPLY VOLTAGES

A connector with bridge rectifier and RAC coils are always used for alternating current supply.

Times ±10%	
Energizing	30 ms
De-energizing	50 ms

4 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

5 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

43 100/110 ED

KT08 CARTRIDGE SOLENOID VALVE SERIES 10

CARTRIDGE TYPE seat 3/4-16 UNF-2B ISO 725

p max **350** bar **Q** nom **50** l/min

OPERATING PRINCIPLE

- ", The KT08 is a 2-ways solenoid valve, poppet type, cartridge execution, available in normally closed version (NC) and normally open version (NO) with nominal flow rate of 50 l/min.
- " It ensures a low internal leakage, which decreases while the pressure increases.
- ", The valve can be ordered with direct current or rectified current solenoids and with five different types of electrical connections, in order to cover many installation requirements (see paragraph 8).
- " For every version, the emergency manual override is an available option (see paragraph 7).

PERFORMANCES (working with mineral oil of viscosity of 36 cSt at 50°C)

Maximum operating pressure	bar	350	
Nominal flow rate	l/min	50	
Pressure drops p - Q	see	paragraph 3	
Electrical characteristics	see	paragraph 5	
Electrical connections	see	paragraph 8	
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25	
Mass	kg 0,32		
Surface treatment with white colour zinc	Fe / Zn 8c 1B UNI ISO 2081/4520		

HYDRAULIC SYMBOLS

1 - IDENTIFICATION CODE

1.1 - Coil identification code

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - PRESSURE DROPS Δp -Q (obtained with viscosity of 36 cSt at 50 °C)

The values in graphs refer to both NC and NO valves and they differ for the mounting interface used.

oversize mounting interface dimensions 3/4-16 UNF-2B ISO 725 dimensions in mm

4 - SWITCHING TIMES

The values indicated refer to a valve tested with Q=25 l/min, p=350 bar, working with mineral oil at a temperature of 50°C and a viscosity of 36 cSt.

TIMES (±10%)					
ENERGIZING DE-ENERGIZIN					
KT08-2NC	60 ms	85 ms			
KT08-2NO	85 ms	60 ms			

5 - ELECTRICAL FEATURES

5.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded onto the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation. The coil is fastened to the tube by a threaded nut, and can be rotated according to the available space.

The interchangeability of coils of different voltages both D or R type is possible without removing the tube.

Protection according CEI EN 60529 - atmpspheric agents

Connector	IP 65	IP 67	IP 69 K
K1 DIN 43650	х		
K2 AMP JUNIOR	x	х	
K4 outgoing cables	х	х	
K7 DEUTSCH DT04 male	х	х	х
K8 AMP SUPER SEAL	х	х	х

NOTE: The protection degree is guaranted only if the connector is correctly installed and locked.

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC)	In compliance with 2004/108/CE
LOW VOLTAGE	In compliance with 2006/95/CE
CLASS OF PROTECTION : Coil insulation (VDE 0580) Impregnation	class H class H

5.2 Current and absorbed power

In the table are shown current and power consumption values relevant to the different coil types. •RŽ coil must be used when the valve is fed with AC power supply subsequently rectified by means of rectifier bridge, externally or incorporated in the •DŽ type connector(see cat. 49 000).

	Resistance at 20°C	Absorbed current	Absorbed power (±5%)				Coil code		
	[](±1%)	[A] (±5%)	[W]	[VA]	K1	K2	K4	K7	K8
C14L3-D12*	5,4	2,2	26,5		1902740	1902750	1902770	1902980	1903020
C14L3-D24*	20,7	1,16	27,8		1902741	1902751	1902771	1902981	1903021
C14L3-R110*	363	0,25		27,2	1902742				
C14L3-R230*	1640	0,11		26,4	1902743				

6 - OVERALL AND MOUNTING DIMENSIONS

7 - MANUAL OVERRIDE

CM for NO version (pushing type)

8 - ELECTRIC CONNECTIONS

connection for DIN 43650 connector code **K1** (standard)

connection for AMP SUPER SEAL connector (two contacts) code ${\bf K8}$

9 - ELECTRIC CONNECTORS

The solenoid valves are supplied without connectors. For coils with standard electrical connections K1 type (DIN 43650) the connectors can be ordered separately. For the identification of the connector type to be ordered please see catalog 49 000. For K2, K7 and K8 connection type the relative connectors are not available.

CM for NC version (screw type)

connection for AMP JUNIOR connector code K2

connection for DEUTSCH DT04-2P male connector code **K7**

10 - SUBPLATES FOR MODULAR MOUNTING

10.1 - Identification code

MOUNTING INTERFACE

HYDRAULIC SYMBOLS

KT08 SERIES 10

10.2 - Overall and mounting dimensions KTM3-P

10.3 - Overall and mounting dimensions KTM3-PT

10.4 - Overall and mounting dimensions KTM3-D, KTM3-RD and KTM3-SB

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

44 100/110 ED

BD6 BANKABLE DIRECTIONAL CONTROL VALVE SERIES 20

p max 280 bar Q max 40 l/min

OPERATING PRINCIPLE

- " The directional control valve BD6 is a bankable valve very well-rounded thanks to its modular design.
- ", This valve has been designed to be assembled with series or parallel connection, mounting up to 6 body-modules.
- " The BD6 valve is suitable for compact applications in the mobile and mini-power pack industries.
- " The intake ports A and B, the inlet P and the outlet T are 3/8Ž BSP threaded.
- " A version with built-in pilot check valves is available for the series configuration.
- " The series configuration allows a max operating pressure of 250 bar

PERFORMANCES (obtained with mineral oil with viscosity of 36 cSt at 50° C)

Maximum operating pressure: - P-A-B ports (parallel) - P-A-B ports (series) - T and T1 ports	bar 280 250 250			
Maximum flowrate: - parallel - series	l/min	40 25		
Pressure drops p - Q	see	paragraph 3		
Electrical characteristics	see paragraph 6			
Operating limits	see paragraph 5			
Electrical connections	see paragraph 9			
Ambient temperature range	°C	-20 / +50		
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt	10 ÷ 400		
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15			
Recommended viscosity	cSt	25		
Single body mass	kg 1,84			
Surface treatment of body and plates:	thermochemical antioxidant			

HYDRAULIC SYMBOLS

1 - IDENTIFICATION CODES FOR LOOSE MODULES

Here below all the loose components identification codes of the bankable valve are shown. To order a whole assembled valve, please use the codes at paragraphes 11 and 12.

The pressure control valve and the poppet type valve with unloading function are briefly described. Fore more detailed information about them please see the 21 100 datasheet for the pressure control valve and the 43 100 for the unloading valve.

1.1 - Valve body

NOTE: The valve bodies and plates are supplied with a thermochemical anti-oxidation treatment.

1.2 - Coil identification code

1.4 - Available spool type for series configuration BD6S

1.4 - Inlet module with pressure control valve for parallel connection

1.5 - Inlet module with pressure control valve and unloading for parallel connections

1.6 - End plate module for parallel connections

1.7 - Inlet module with pressure control valve for series connection

1.8 - Outlet end plate for series connection

1.9 - Studs and fixing kit

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - CHARACTERISTIC CURVES (values obtained with viscosity 36 cSt at 50 $^{\circ}\text{C}$)

3.1 - Body modules pressure drops p-Q

3.1 - Inlet modules

P-T characteristic of pressure control valve wholly unscrewed
 P-T characteristic of the unloading valve

ENERGIZED VALVE

	FLOW DIRECTION				
SPOOL TYPE	ΡA	ΡВ	ΑT	ВT	
	CURVES ON GRAPHS				
S1, SA1, SB1	2	2	1	1	
S3, SA3, SB3	2	2	1	1	
C3	5	5	3	3	
TA, TB	4	4	1	1	
TA02, TB02	4	4	1	1	
TA23, TB23	4	4			
RK	2	2	1	1	
S4, SA4, SB4	8	8	8	8	

NOTE: The curve 6 shows the pressure drops in passing P or T.

DE-ENERGIZED VALVE (central position)

	FLOW DIRECTION				
SPOOL TYPE	ΡA	ΡB	AT	ВT	ΡТ
	CURVES ON GRAPHS				
S3, SA3, SB3			2	2	
S4, SA4, SB4					7

4 - SWITCHING TIMES

Values obtained according to ISO 6403, with mineral oil with viscosity 36 cSt at 50° C.

TIMES	ENERGIZING	DE-ENERGIZING
ms (±10%)	25 ÷ 75	15 ÷ 25

5 - BODY MODULE OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

SPOOL TYPE	P-A CURVE	P-B CURVE
S1, SA1, SB1	1	1
S3, SA3, SB3	3	3
S4, SA4, SB4	5	5
TA, TB	2	2
TA02, TB02	2	2
TA23, TB23	2	2
RK	4	4
C3	3	3

6 - ELECTRICAL FEATURES

6.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation. The coil is fastened to the tube by a threaded ring, and can be rotated to suit the available space. The interchangeability of coils of different voltages is allowed within the same type of supply current, rectified or direct.

Connector	IP 65	IP 67	IP 69 K
K1 DIN 43650	х		
K2 AMP JUNIOR	x	х	
K4 outgoing cables	х	х	
K7 DEUTSCH DT04 male	х	х	х
K8 AMP SUPER SEAL	х	х	х

NOTE: The protection degree is guaranteed only with the connector correctly wired and installed.

Protection from atmospheric agents CEI EN 60529

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC)	In compliance with 2004/108/CE
LOW VOLTAGE	In compliance with 2006/95/CE
CLASS OF PROTECTION : Coil insulation (VDE 0580) Impregnation:	class H class H

6.2 Current and absorbed power

In the table are shown current and power consumption values relevant to the different coil types. •RŽ coil must be used when the valve is fed with AC power supply subsequently rectified by means of rectifier bridge, externally or incorporated in the •DŽ type connector(see cat. 49 000).

	Resistance	Absorbed	Absorb	ed power	Coil code				
	20°C	current	(±	5%)					
	[](±1%)	[A] (±5%)	[W]	[VA]	K1	K2	K4	K7	K8
CD14-D12*	5,4	2,2	26,5		1902740	1902750	1902770	1902980	1903020
CD14-D24*	20,7	1,16	27,8		1902741	1902751	1902771	1902981	1903021
CD14-D28*	27,5	1,02	28,5		1902744				
CD14-R110*	363	0,25		27,2	1902742				
CD14-R230*	1640	0,11		26,4	1902743				

7 - OVERALL AND MOUNTING DIMENSIONS

7.1 - Body module

7.2 - Inlet modules for parallel configuration

7.3 - Inlet module BD6S-F* for series configuration

7.4 - End modules

8 - INSTALLATION

Configurations with centering and return springs can be mounted in any position.

9 - ELECTRIC CONNECTIONS

connection for DIN 43650 connector code K1

outgoing cable connections code K4

connection for AMP SUPER SEAL (two contacts) connector type code K8

10 - ELECTRIC CONNECTORS

The solenoid valves are supplied without connectors.For coils with standard electrical connections K1 type (DIN 43650) the connectors can be ordered separately. For the identification of the connector type to be ordered please see cat. 49 000. For K2, K7 and K8 connection type the relative connectors are not available.

connection for AMP JUNIOR connector type code K2

connection for DEUTSCH DT04-2P male connector type code **K7**

11 - ASSEMBLED VALVE - PARALLEL CONFIGURATION

11.1 - Identification code

BD6-P3-FK280/S1-C3-S1/R/20N-D24K1: assembled valve includes: inlet module with pressure control valve with adjustment up to 280 bar and unloading valve; 1st body module with spool S1, 2nd body module with spool C3 and 3th body module with spool S1; blind end plate; NBR seals, 24V DC coils and K1 connection.

11.2 - Hydraulic symbols and connection scheme

12 - ASSEMBLED VALVE - SERIES CONFIGURATION

12.1 - Identification code

NOTE: Screwing completely the pressure control valve, the reachable max operating pressure is 240 bar with Q \$5 l/min

Coding example:

BD6-S3-F140/S4-SB4-SA4/R1/20N-D24K1: assembled valve includes: inlet module with pressure control relief valve, with adjustment up to 140 bar, 1st body module with spool S4, 2nd body module with spool SB4 and 3th body module with spool SA4; outlet plate; NBR seals, 24V DC coils and K1 connection.

12.2 - Hydraulic symbols and connection scheme

13 - OVERALL DIMENSION OF THE ASSEMBLED VALVE IN PARALLEL CONFIGURATION

14 - OVERALL DIMENSION OF THE ASSEMBLED VALVE IN SERIES CONFIGURATION

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

44 150/112 ED

BANKABLE LOAD SENSING PROPORTIONAL CONTROL VALVE

SERIES 11

p max 300 barQ max 120 l/min

OPERATING PRINCIPLE

PERFORMANCES (obtained with mineral oil with viscosity of 36 cSt at 50°C)

Maximum operating pressure: - A and B ports - P1 and P2 ports - T1 port	bar	300 250 20
Maximum flowrate: - A and B ports - P1 and P2 ports - T1 port	l/min	45 100 120
Electrical characteristics	see paragraph 5	
Ambient temperature range	°C	-20 / +60
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt 10 ÷ 400	
Fluid contamination degree	According to ISO 4406:1999 class 18/16/13	
Recommended viscosity	cSt	25
Single body mass	kg	4,5
Surface treatment of body and plates	thermochemical antioxidant	

", The BLS6 directional control valve is stackable and can be assembled up to 8 different proportional and on/off modules .

- " Each module is equipped with a meter-in compensator that keep costant the flow, independently from load changes.
- " Sections with pressure compensators are not influenced in any way by other operated functions, provided that sufficient pump capacity is available. To correctly work, the sum of the flows contemporarily used must not overcome the 90% of the inlet flow.
- " The user ports A and B are threaded 1/2Ž BSP. On the inlet module the ports P1, P2 and T1 are threaded 3/4Ž BSP.
- " The manual lever override is available as option.

HYDRAULIC SYMBOL

1 - IDENTIFICATION CODES FOR LOOSE MODULES

Here below all the loose components identification codes of the bankable valve are shown. To order a whole assembled valve, please use the codes at paragraphes 9 and 10.

The inlet section is available in different version for fixed pump and for system with Load Sensing pump.

1.1 - Proportional module

1.2 - On-off modules

If necessary the proportional spool can be used together with on-off solenoids. In this case the description for the spool type as to be as follow:

SC = closed center with on-off solenoid

SA = open center with on-off solenoid

In this version is also available a spool for high flow named SC60/60 and SA60/60.

1.3 - Inlet modules

The inlet section is available in different version, for fixed and for variable pumps with load sensing. The version for fixed pump can be easily converted to work with variable pumps and vice versa.

1.4 - End plate modules

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4 or fluids HFDR type. For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

3 - CHARACTERISTIC CURVES (values obtained with viscosity 36 cSt at 50 °C)

Typical constant flow rate obtained with internal 2-way compensator, and current with 12V solenoid type (for D24 version the maximum current is 860 mA), measured for the various spool types available.

ASYMMETRICAL FLOWS - PC AND PA SPOOLS

4 - ELECTRICAL CHARACTERISTICS

Proportional solenoid

The proportional solenoid comprises two parts: tube and coil.

The tube, screwed to the valve body, contains the armature which is designed to maintain friction to a minimum thereby reducing hysteresis.

The coil is mounted on the tube secured by means of a lock nut. It can be rotated through 360° depending on installation clearances.

Protection from atmospheric agents CEI EN 60529

Plug-in type	IP 65	IP 69 K
K1 DIN 43650	x (*)	
K7 DEUTSCH DT04 male	x	x (*)

(*) The protection degree is guaranteed only with the connector correctly connected and installed

NOMINAL VOLTAGE	V DC	12	24
RESISTANCE (at 20°C) K1 COIL K7 COIL		3.66 4	17.6 19
NOMINAL CURRENT	А	1.88	0.86
DUTY CYCLE		100%	
PWM FREQUENCY	Hz	200	100
ELECTROMAGNETIC COMPATIBILITY (EMC)	Y According to 2004/108/CE		
CLASS OF PROTECTION : Coil insulation (VDE 0580) Impregnation:	class H class F		

Reference signal step	0 100%	100 0%		
Step response [ms]				
BLS6	50	40		

5 - STEP RESPONSE (measured with mineral oil with

(measured with mineral oil with viscosity of 36 cSt at 50°C with the relative electronic control units)

Step response is the time (delay) taken for the valve to reach 90% of the set position value following a step change of the reference signal.

6 - ELECTRIC CONNECTIONS

connection for DIN 43650 connector

connection for DEUTSCH DT04-2P connector type

7 - ELECTRIC CONNECTORS

The on-off valves are supplied without connectors. For coils with standard electrical connections K1 type (DIN 43650) the connectors can be ordered separately. For the identification of the connector type to be ordered please see cat. 49 000. Connectors for K7 connections are not available.

8 - OVERALL AND MOUNTING DIMENSIONS

8.1 - Proportional module

BLS6 SERIES 11

8.2 - Inlet modules

8.2 - Inlet modules

8.3 - End modules

9 - IDENTIFICATION CODE OF ASSEMBLED VALVE

BLS6-C00-PC30/30-PC30/30-C92/11V-D24K1: assembled valve includes: inlet module without 3 way compensator; 2 prop. modules with closed center flow 30/30; end plate without load sensing port; FPM seals, 24V DC coils and K1 connection.

BLS6-CF5-PA45/30-PA45/30-PC30/30-PAB15/15-C91/11V-D12K1: assembled valve includes: inlet module for fixed pump, with pressure max 210 bar; 2 prop. modules with open center flow 45/30, 1 prop. module with close center, flow 30/30 and 1 prop. module with open center and solenoid only on side B, flow 15/15; end plate with load sensing port; FPM seals, 12V DC coils and K1 connection.

NOTE: To obtain the best performances, we suggest to mount the spool with the max flow first, and then the others decreasing.

10 - INSTALLATION AND OVERALL DIMENSIONS OF THE ASSEMBLED VALVE

11 - MANUAL OVERRIDE

The standard valve has solenoids whose pin for the manual operation is integrated in the tube. The operation of this control must be executed with a suitable tool, minding not to damage the sliding surface. Four different manual override version are available upon request:

- CM version, manual override belt protected.
- CS version, with metal ring nut provided with a M4 screw and a blocking locknut to allow the continuous mechanical operations.
- CH version, lever manual override.
- **CK** version, knob. When the set screw is screwed and its point is aligned with the edge of the knob, tighten the knob till it touches the spool: in this position the override is not engaged and the valve is de-energized. After adjusting the override, tighten the set screw in order to avoid the knob loosing.

12 - ELECTRONIC CONTROL UNITS

One solenoid

EDC-111	for solenoid 24V DC	plug vorsion	soo cat 80.120	
EDC-141	for solenoid 12V DC	plug version	See cal. 69 120	
EDM-M111	for solenoid 24V DC	DIN EN 50022	aaa aat 80.250	
EDM-M141	for solenoid 12V DC	rail mounting	See Cal. 69 250	

These cards drive only a module at once. Every module to be driven with electronic card must have its

one.

Two solenoids

EDM-M211	for solenoid 24V DC	rail mounting	200 oct 80 250
EDM-M241	for solenoid 12V DC	DIN EN 50022	See Cal. 09 200

13 - EXAMPLES OF APPLICATION

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

44 200/111 ED

BFD* SIX WAYS BANKABLE FLOW DIVERTER SERIES 10

p max 320 barQ max 90 l/min

OPERATING PRINCIPLE

- " BFD* is a 6 ways bankable flow diverter that allows the simultaneous connection of 2 utilities, alternating the direction of flow through a solenoid operate directional valve.
- ", It is available in two sizes, depending on the requested flow, and is used mainly for compact applications for the mobile sector.
- " Valve BFD is also suitable for series mounting, lining up to max 5 modules.
- " The external drain is available as an option on both versions.

PERFORMANCES (obtained with mineral oil with viscosity of 36 cSt at 50°C)

		BFD06	BFD10
Maximum operating pressure : - with drain Y	bar	250 320	
Maximum flow	l/min	60	90
Pressure drops p - Q	see	paragraph	3
Electrical features	see	paragraph 6	6
Operating limits	see paragraph 4		
Electrical connections	see paragraph 10		
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt 25		
Mass:	kg	3 4,2	
Surface treatment	thermochemical antioxidant		

HYDRAULIC SYMBOL

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V).

For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

3 - CHARACTERISTIC CURVES (obtained with viscosity 36 cSt at 50 °C)

3.1 - Pressure Drops p-Q at rest

4 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage.

The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

CURVE
1
2
3
4

5 - SWITCHING TIMES

The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

TIMES ms (±10%)	ENERGIZING	DE-ENERGIZING
BFD06	25 ÷ 75	20 ÷ 50
BFD10	50 ÷ 100	20 ÷ 40

6 - ELECTRICAL CHARACTERISTICS

6.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

Protection from atmospheric agents CEI EN 60529

Plug-in type	IP
K1 DIN 43650	IP 65
K7 DEUTSCH DT04 male	IP 69 K

NOTE: The protection degree is guaranteed only with the connector correctly connected and installed.

NOTE 2: In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 2)	In compliance with 2004/108/ CE
LOW VOLTAGE	In compliance with 2006/95 CE
CLASS OF PROTECTION : Coil insulation (VDE 0580) Impregnation:	class H class F (BFD06) class H (BFD10)

6.2 Current and absorbed power

The table shows current and power consumption values relevant to the different coil types.

Valve	Coil	Resistance at 20°C [] (±1%)	Current consumpt. [A] (±5%)	Absorbed power [W] (±5%)	Coil K1	code K7
	C22S3-D12	4 ÷ 5	2,72	32,7	1903080	1902940
BFD06*	C22S3-D24	18 ÷ 19,5	1,29	31	1903081	1902941
	C22S3-D28	24,5 ÷ 27	1,11	31	1903082	-
BFD10*	C22L5-D12*	2,9	4,14	50	1903150	-
	C22L5-D24*	12,3	1,95	47	1903151	-

BFD* SERIES 10

7 - BFD06 OVERALL AND MOUNTING DIMENSIONS

8 - BFD10 OVERALL AND MOUNTING DIMENSIONS

9 - INSTALLATION

The solenoid operated valve can be installed in any position without undermining the proper functioning.

10 - ELECTRICAL CONNECTIONS

Connection type connector DIN 43650 - Code K1

Connection type connector DEUTSCH DT04-2P male Code K7 (for BFD06 only)

11 - ELECTRICAL CONNECTORS

The solenoid valves are supplied without connectors. For coils with electrical connection type K1 (DIN 43650) connectors can be ordered separately. To identify the type of connector to be ordered catalogue to see 49 000. For connections K7 its connectors are not available.

12 - OPTIONS

12.1 Boot manual override

The standard valve has solenoids whose pin for the manual operation is integrated in the tube. The operation of this control must be executed with a suitable tool, minding not to damage the sliding surface. Option is available on both versions.

12.2 - Subplate external drain port (option Y)

This version allows the operation with pressures up to 320 bar on the ports.

It consists in a Y drain hole realized on the valve coupling interface, where the Y port is connected with the solenoid tubes: in this way the tubes are not stressed by the pressure operating on the valve ports.

13 - SERIES CONFIGURATION

The BFD* valve can also mounted in series, bundled up to 5 individual modules. The fixing kit must be ordered separately. It includes: rods and screws, nuts, security washers and OR, as indicated in the table below.

13.1 Hydraulic scheme, dimensions and installation

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

45 100/110 ED

PRESSURE DROP P-Q

PERFORMANCES

valve code	nominal dimension	maximum flow rate	mass [kg]	max op pressu	erating re [bar]
		[l/min]		continuous	peak
VR 2- I	1/4"	50	0,1	320	320
VR 5- I	3/4"	150	0,2	250	220
VR 7- I	1¼"	300	0,8	200	320

Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	according to ISO 4406:1999 class 20/18/15		
Viscosità raccomandata	cSt	25	

VR*-I CHECK VALVES SERIES 32

CARTRIDGE TYPE

- **p** max (see table of performances)
- **Q** max (see table of performances)

OPERATING PRINCIPLE

- VR*-I valves are one-way check valves cartridge type construction and can be used in blocks or panels.
- In rest conditions, the valve poppet, which is a cone on edge seal type, is kept closed by a spring with fixed setting.
- The poppet opens when the pressure in the intake line "A" exceeds the set value of the spring, added to any pressure in the outlet line "B".
- Available in three sizes for flow rates of up to 300 l/min and with three different cracking pressures.

HYDRAULIC SYMBOL

45 100/110 ED

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

45 110/110 ED

CARTRIDGE TYPE

- p max 350 bar
- **Q** max (see table of performances)

OPERATING PRINCIPLE

The VSK* valves are shuttle type, cartridge version and it can be used in panels and blocks.

- The valve select the higher pressure signal between "1" and "3" through the output port "2"
- The VSK1 reachs flows up to 20 l/min.
- The VSK2 is a shuttle valve for pilot signals up to a 3 l/min flows.

VSK1 PRESSURE DROPS p-Q

PERFORMANCES

valve	max flow [l/min]	mass [kg]
VSK1	20	0,013
VSK2	3	0,013

Recommended viscosity	cSt	25	
Fluid contamination degree	According to ISO 4406:1999 class 20/18/1		
Fluid viscosity range	cSt	10 ÷ 400	
Fluid temperature range	°C	-20 / +80	
Ambient temperature range	°C	-20 / +50	

VSK2 PRESSURE DROPS p-Q

HDRAULIC SYMBOL

45 110/110 ED

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24

Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

PRESSURE DROPS p-Q

VD*-W* CHECK VALVES SERIES 30

p max 400 bar

Q max (see table of performances)

OPERATING PRINCIPLE

- VD*-W* valves are check valves with threaded "BSP" ports for mounting in-line on hydraulic lines.
- They allow the flow to pass freely in one direction, blocking it in the opposite direction.
- In rest conditions, the valve poppet is kept closed by a spring. The poppet opens when the pressure in the intake line "A" exceeds the set value of the spring, added to any pressure in the outlet line "B".
- Available in eight sizes for flow rates of up to 850 l/min and with five different cracking pressures.

PERFORMANCES

Valve	BSP port dimension	Maximum flow rate [l/min]	Mass [kg]	Max operating pressure [bar]
VD2-W*	1/4"	25	0,17	
VD3-W*	3/8"	40	0,26	400
VD4-W*	1/2"	75	0,41	400
VD5-W*	3/4"	125	0,6	
VD6-W*	1"	200	1,2	
VD7-W*	1 ¼"	280	1,8	320
VD8-W*	1 1⁄2"	650	3,2	320
VD9-W*	2"	850	4,8	

Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	cSt	25
Recommended viscosity	acc. to ISC	D 4406:1999 class 20/18/15

HYDRAULIC SYMBOL

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

45 300/110 ED

SUBPLATE MOUNTING

- p max (see table of performances)
- **Q** max (see table of performances)

OPERATING PRINCIPLE

- VR*-P valves are one-way check valves constructed in the subplate mounting version.
- In rest conditions, the valve poppet, which is a cone on edge seal type, is kept closed by a spring with fixed setting.
- The shutter opens when the pressure in the intake line "A" exceeds the set value of the spring, added to any pressure in the outlet line "B".
- Available in three sizes for flow rates up to 400 l/min and with three different cracking pressures.

TECHNICAL SPECIFICATIONS

Valve code	Nominal dimension	Maximum flow rate [l/min]	Mass [kg]	Max. operating pressure [bar]		
VR3 - P	3/8"	100	2,3	350		
VR5 - P	3/4"	200	4,8	350		
VR7 - P	1¼"	400	9	250		

Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25	

HYDRAULIC SYMBOL

1 - IDENTIFICATION CODE

2 - CHARACTERISTIC CURVES (values obtained with viscosità 36 cSt at 50°C)

PRESSURE DROPS p - Q

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

NOTE: Add the cracking pressure to the values shown in the diagram.

4 - VR3-P OVERALL AND MOUNTING DIMENSIONS

5 - VR5-P OVERALL AND MOUNTING DIMENSIONS

VR*-P

6 - VR7-P OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

VP*-P*-MU HYDRO-PILOT OPERATED CHECK VALVES SERIES 12

SUBPLATE MOUNTING ISO 5781 (CETOP 06 07)

p max 320 barQ max (see table of performances)

OPERATING PRINCIPLE

- " VP*-P*-MU valves are check valves with hydraulic release, constructed in a version with subplate mounting in accordance with ISO 5781 (CETOP RP 121H) standards.
- ", They incorporate the functions of a normal one-way check valve with the facility, by means of external piloting, to release the poppet and allow the oil to pass also in the direction opposite to the free flow, from B to A.
- ", In rest conditions, the valve poppet, which is a cone on edge seal type, is kept closed by a spring with fixed setting. When piloting pressure is sent to port X, the release piston is operated, thus opening the main poppet and allowing the free flow from B to A.
- " The drainage port Y isolates the front face of the control piston from chamber A.
- ", They are available in two sizes for flow rates up to 100 l/min and with different cracking pressures in the free flow direction.

			-
		VP3	VP5
Maximum operating pressure	bar	320	320
Nominal flow rate	l/mn	50	100
Piloting ratio between release piston and sealed chamber areas	VP*-P*-MU	3,4:1	2,7:1
Piloting ratio with decompression device	VP*-P*/P-MU	12:1	14:1
Ambient temperature range	°C	-20 /	/ +50
Fluid temperature range	°C	-20 /	/ +80
Fluid viscosity range	cSt	10 ÷	- 400
Fluid contamination degree	According to ISO	4406:1999 cl	ass 20/18/15
Recommended viscosity	cSt	2	25
Mass:	kg	3,7	6

PERFORMANCES (working with mineral oil of viscosity of 36 cSt at 50°C)

HYDRAULIC SYMBOL

1 - IDENTIFICATION CODE

2 - CHARACTERISTIC CURVES (values obtained with viscosity 36 cSt at 50°C)

NOTE: The curves shown in the graph refer to B A and A B flow with the valve released hydraulically. For A B flow, with the valve not released hydraulically, add the cracking pressure to the values shown.

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

VP*-P*-MU SERIES 12

4 - VP3-P*-MU OVERALL AND MOUNTING DIMENSIONS

5 - VP5-P*-MU OVERALL AND MOUNTING DIMENSIONS

6 - USE

The VP*-P*-MU check valves with hydraulic release are used in circuits where the position of the actuators must be maintained even in the absence of hydraulic power.

They are available in two versions with the following characteristics:

VP*-P*-MU The VP*-P*-MU valves are check valves with hydraulic release that incorporate the functions of a normal one-way check valve with the possibility to release the poppet by means of external piloting, thus allowing flow of the oil also in the opposite direction of the free flow, from B to A. The valve poppet, a cone on edge seal type, is kept closed by a spring with fixed setting during rest conditions. When pilot pressure is sent to port X, the release piston is activated and opens the main poppet, thus allowing the reverse flow.

These valves have hydraulic isolation of the front face of the release piston from chamber A of the valve, by external drainage Y. This solution eliminates problems which can occur if, during the release phase of the valve, pressure builds up in chamber A near to or greater than the piloting pressure X, causing a backward movement of the piston and thus unwanted closure of the valve.

VP*-P*/P-MU The VP*-P*/P-MU valves are check valves with hydraulic release that, in addition to the characteristics of the preceding version, are equipped with a decompression device.

They are recommended when operating with high working pressures or with high loads that act as pressure multipliers.

The circuit (chamber B) is decompressed prior to complete opening of the valve during the release phase.

This prevents pressure shocks in the circuit and because of the high ratio existing between the areas of the control piston and the decompression device, release can occur even at a low piloting pressure.

Pilot pressure to port X operates the release piston which first opens the pre-opening poppet, causing decompression of the sealed chamber, it then opens the main poppet, allowing free flow from B to A.

/P*-P*-MU

SERIES 12

VP*-P*/P-MU

7 - SUBPLATES (see catalogue 51 100)

	VP 3	VP 5
Туре	PMSZ3 - AI 4G with rear ports PMSZ3 - AL4G with side ports	PMSZ5 - AI5G with rear ports PMSZ5 - AL5G with side ports
A - B port dimensions	1/2Ž BSP	3/4Ž BSP
X - Y port dimensions	1/4Ž BSP	1/4Ž BSP

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

CFP FILLING VALVES SERIES 10

SANDWICH MOUNTING

p max 350 bar

Q max (see table of performances)

OPERATING PRINCIPLE

- ", The CFP valves are pilot operated check valves, expressly designed for hydraulic presses, to allow easy filling and empting of the press cylinder during the fast down and raise strokes.
- ", They are •sandwichŽ mounted, to be installed directly between the suction flange (connected to the tank) and the cylinder (see paragraph 6).
- " A version with a pre-opening device is available, connected to the X pilot port, that allows circuit decompression before the cylinder raising phase begins.
- " The CFP valves are available in 7 different sizes with maximum flow up to 2500 l/min.

PERFORMANCES

VALVE CODE			CFP-S032	CFP-S040	CFP-S050	CFP-S063	CFP-S080	CFP-S100	CFP-S125	
Nominal size			DN-32	DN-40	DN-50	DN-63	DN-80	DN-100	DN-125	
Maximum flow (with p =0,3 bar and viscosity 36 cSt)		l/min	160	160 250 400 600 1000 1600						
Maximum pressure	Ports P and B	bar	350							
	Port X	bar	100							
	Port A	bar	16							
Cracking and pilot pressure			see par. 4							
Mass kg			1,2	1,7	2,5	3,5	5,2	12	20	

Ambient temperature range	°C	20 / +50			
Fluid temperature range	°C	20 / +80			
Fluid viscosity range	cSt	10 ÷ 400			
Recommended viscosity	cSt	25			
Fluid contamination degree	according to ISO 4406:1999 class 20/1				

HYDRAULIC SYMBOL

1 - IDENTIFICATION CODE

2 - CHARACTERISTIC CURVES (values measured with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

Valve code	Cracking pressure A - B [bar]	Minimum pilot pressure [bar]	Pilot pressure ratio p (B) / p (X)	Pre-opening pressure (option /P) [bar]	Pilot volume for opening valve [cm³]
CFP-S032			3,6		1,22
CFP-S040	0,12		3,9		2,36
CFP-S050			4,2	$p(Y) = 0.18 \times p(R) + 7$	4,91
CFP-S063		8,0	4,2	$p(x) = 0, 10 \times p(B) + 7$	8,13
CFP-S080	0.10		4,5		12,72
CFP-S100	0,13		4,3		28,63
CFP-S125			4,3	-	67,86

4 - OPENING AND PILOTING PRESSURES

5 - OVERALL DIMENSIONS

6 - INSTALLATION AND CONNECTION FLANGE DIMENSIONS

Recommended building material: C22

	(1) Suggested dimensions for connection flange (see NOTE 2)							Max	(2)						
	D6 [mm]	D7 [mm]	D8 [mm] NOTE 1	D9 [mm]	D10 [mm]	D11 [mm]	D12 [mm]	D13 [mm]	A [mm]	B [mm]	C [mm]	on port B [bar]	Fastening bolts (type A 12.9)	Q.ty	Tightening torque [Nm]
CFP-S032	88	42	48,3	88	110	150	46	18	3	22	45		M16	4	285
CFP-S040	102	53	60,3	102	125	165	58	18	3	29	62		M16	4	285
CFP-S050	122	69	76,1	122	145	185	71	18	3	34	68		M16	8	285
CFP-S063	138	82	88,9	138	160	200	86	18	3	43	72	350	M16	8	285
CFP-S080	162	107	114,3	162	190	235	108	22	3	51	78		M20	8	560
CFP-S100	188	131	139,7	188	240	295	132	29	3	62	105		M27	8	1400
CFP-S125	218	160	168,3	218	280	345	170	32	3	79	115		M30	8	1900

NOTE 1: Calculated diameters for PN 16 - DIN 2448 steel pipes

NOTE 2: For application with standard connection flange type UNI2284 - UNI2285 - UNI2286, special bushings to fit on fastening bolts must be provided in order to ensure a correct valve mounting.

For information about the installation with UNI connector flange, please consult our technical department.

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

LOGIC ELEMENTS

SERIES 20

LC* CARTRIDGE VALVES ISO 7368 - DIN 24342

LP* COVERS

ND 16 - 25 - 32 - 40 - 50 - 63

p max 420 bar

Q max (see table of performances)

OPERATING PRINCIPLE

" Logic elements are cartridge valves suitable for installation in blocks or manifolds. They are available in five different sizes: ND 16 - 25 - 32 - 40 - 50 - 63.

", They are designed to perform complex hydraulic circuits, using functional compact blocks, with high flow rates and low pressure drops.

- " They are made of a cartridge valve with ISO7368 / DIN 24342 cavity bore and a control cover (4). The cover includes the cartridge valves pilot lines; some versions are designed for the installation of ISO 4401-03 (CETOP 03) valves, to realise different control functions (see paragraph 8 for diagrams and function descriptions). A low leakage version, obtained inserting a seal into the seat no. 5, is also available.
- ", The cartridge valves are composed of a jacket (2), a poppet (1), and a closing spring (3). The poppet can either be standard (S) or with a damping nose (D), suitable for a smooth flow control during the valve opening and closing phases.
- " There are two different types of cartridge valves available:
 - **Q** type: this valve is used for flow and directional control and as a check valve.

The areas involved are:

- ${\rm A}^{}_1$ corresponding to the seat diameter area, considered as reference area = 1
- ${\rm A}_{\rm 3}$ corresponding to the jacket internal diameter area.
- A_2 corresponding to the difference between A_3 A_1

The area ratio A_1/A_3 is 1/1,66.

The valve opens when the pressure acting either on area A_1 (flow from A to B) or on area A_2 (flow from B to A) is higher than the pressure acting on area A_3 (added to the spring load value).

- P type: this valve is used for pressure control.

In this case the areas A_1 and A_3 are equivalent (area ratio 1:1) and the valve enables the flow direction from A to B only.

1 - IDENTIFICATION CODE FOR CARTRIDGE VALVES

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - TECHNICAL CHARACTERISTICS (cartridge valve with control cover)

Max operating pressure LC cartridge valve	bar	420		
Max operating pressure limit of cover type DP*, DPE*, DF1, DF2, LCM	bar	350		
Max operating pressure with distributor installed on cover	See t	echnical characteristics of the distributor		
Ambient temperature range	°C	-20 / +50		
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt	10 ÷ 400		
Fluid contamination degree	cSt 10 ÷ 400 According to ISO 4406:1999 class 20/18/15			
Recommended viscosity	cSt	25		

3.1 - Cartridge valves type Q performances (flow control function)

					NOMINAL SIZE					
				16	25	32	40	50	63	
Area A1			cm ²	1,54	3	6	8,76	14,8	24,6	
Area A2			cm ²	1	2	4	5,76	9,7	16,1	
Area A3			cm ²	2,54	4,9	10	14,3	24,3	40,7	
	opening stroke h		cm	0,8	1	1,25	1,6	1,8	2,3	
Version S:	opening volume	cm ³	2,03	4,9	12,5	22,88	43,74	96,26		
	max recommended flow	l/min	250	500	900	1300	2000	3000		
opening stroke h	opening stroke h		cm	0,8	1,15	1,5	1,8	2,2	2,7	
Version D:	Version D: opening volume		cm ³	2,03	5,63	15	25,74	53,46	110	
	max recommended flow		l/min	200	450	800	1100	50 63 6 14,8 24,6 6 9,7 16,1 3 24,3 40,7 5 1,8 2,3 38 43,74 96,26 100 2000 3000 32 2,2 2,7 74 53,46 110 100 1700 2700 5 0,5 - 2 2 2 4 - - 6 0,8 - $3,2$ 3,2 3,2 9 $5,9$ - 9 $3,9$ $7,8$	2700	
		spring 0,5		0,5	0,5	0,5	0,5	0,5	-	
	AB	spring 2		2	2	2	2	2	2	
Cracking		spring 4		4	4	4	4	4	-	
pressure		spring 0,5	bar	0,9	1,1	0,7	0,76	0,8	-	
	ВА	spring 2		3,1	3	3,1	3	3,2	3,2	
		spring 4		6,15	5,9	5,4	5,9	5,9	-	
Mass			Kg	0,25	0,5	1,1	1,9	3,9	7,8	

3.2 - Cartridge valves type P performances (pressure control function)

				NOMINAL SIZE					
			16	25	32	40	50	63	
Area A1 = Area A3		cm ²	2,54	4,9	10	14,4	24,3	40,7	
Version S: max recommended flow		l/min	200	400	900	1000	1500	2500	
Cracking	spring 1		-	-	-	-	-	1	
pressure	spring 2	bar	2	2	2	2	2	-	
Mass		Kg	0,25	0,5	1,1	1,9	3,9	7,8	

4 - CHARACTERISTIC CURVES (values obtained with viscosity 36 cSt at 50°C)

4.1 - LC*-QS flow control function and LC*-PS pressure control function

4.2 - Flow control function with damping nose LC*-QD

⊥ 0.05

† ∓ H1 H7

-@ 0.03

ł

LC CARTRIDGE VALVES NOMINAL SIZE N'A D1 1.5 $ØD1^{H7}$ 1.6/ ØD2^{H7} ∞10 H4 ØD3 max H2 В ΗЗ ØD4 <u>م5°</u> K12 H5 ØD4 max <u>م</u> Н6 H1 min А H2 ± 0,1 H3 ^{+ 0,1} D3 D2 H4 referred to diameter ØD4 29,5 65,5 86,5 H4 referred to diameter ØD4 max 40,5 2,5 H5 2,5 H6 min

2,5

2,5

5 - LC CARTRIDGE VALVES SEAT DIMENSIONS ACCORDING TO ISO 7368 / DIN 24342

6 - LP CONTROL COVERS INTERFACE DIMENSIONS ACCORDING TO ISO 7368 / DIN 24342

H7

	LP CONTROL COVERS NOMINAL SIZE						
	16	25	32	40	50	63	
ØD5	M8	M12	M16	M20	M20	M30	
ØD6 max	4	6	8	10	10	12	
ØD7 ^{H13}	4	6	6	6	8	8	
L1	*	85	100	125	140	180	
L2 ± 0,1	48	62	76	92,5	108	137,5	
L3 ± 0,1	46	58	70	85	100	125	
L4 ± 0,1	23	29	35	42,5	50	62,5	
L5 ± 0,1	12,5	13	18	19,5	20	24,5	
L6 ± 0,1	2	4	6	7,5	8	12,5	
L7	*	13,5	15	20	20	27,5	
L8 min	15	20	28	35	35	52	
L9 min	8	8	8	8	8	8	

* = cover with special dimensions (see par. $9.2 \div 9.7$)

7 - COVERS IDENTIFICATION CODE

				L	P	/ 2	0 N		
Cartri two-w	Cartridge valve cover Seals: NBR seals for mineral oil two-way type LC								
	(the overall and mounting dimensions remain unchanged from 20 to 29)								
16 ND16	AVAIL 25 ND25	-ABLE N 32 ND32	0MINAL 40 ND40	SIZES 50 ND50	63 ND63	COVER NAME	SYMBOL	DIAGRAM PARAGRAPH	OVERALL DIMENSIONS PARAGRAPH
x	x	x			x	R		8.1	9.1
x	x	x	x	x	x	D	P A T	8.2	9.2
x	x	x	x			DZ	$\begin{array}{c cccc} P & A & B & T \\ \hline \varphi & \varphi & \varphi \\ \hline & \varphi & \varphi \\ \hline & & \chi & Z1 & C & Z2 & Y \end{array}$	8.3	9.3
x	x	x	x	x		DF1	P A T +	8.4	9.4
x	x	x	x			DF2	P A T 01.5 01.5 X Z1 C Y	8.5	9.5
x	x	x	x	x	x	Q		8.6	9.6
x	x	x	x	x	x	DP*	$\begin{array}{c} P \\ x \\ x \\ x \\ z1 \\ z \\ $	8.7	9.7
x	x	x	x	x		DPE*		8.8	9.7

8 - FUNCTIONAL DIAGRAMS

8.1 - R cover for directional control and check valve function with external pilot X

Functional diagrams	Description				
	Piloting of the cartridge valve through the X port, available on the mounting surface or with pipe connection 1/4" BSP. For ND 40 and ND 50 sizes, the external piloting function can be realised by using control cover type D, with blanking plate code 1950751 (to be ordered separately).				

8.2 - D cover for directional control and check valve function

Functional diagrams	Description
	Piloting of the cartridge valve by means of solenoid valve type DS3-TA (to be ordered separately - see catalogue 41 150) - solenoid valve OFF = A B intercepted flow - solenoid valve ON = A B free flow

8.3 - DZ cover for directional control with possibility to pilot other cartridges in line

Functional diagrams	Description
	The DZ cover enables the piloting of its cartridge valves and also of other valves connected to Z1 and Z2 pilot lines. The solenoid valve type DS3-S10 must be ordered separately (see catalogue 41 150).

8.4 - DF1 cover for directional control and check function with double pilot line

Functional diagrams	Description
	The DF1 cover gives the possibility of a double pilot line through X and Z1 ports. The solenoid valve type DS3-TA must be ordered separately (see catalogue 41 150). - solenoid valve OFF = A B intercepted flow - solenoid valve ON = A B free flow , B A intercepted (if pilot line X is connected with B and if Z1 is connected with A).

8.5 - DF2 cover for directional control and check function with priority piloting from two external lines

Functional diagrams	Description
	The cartridge valve can be simultaneously piloted from X and Z1 lines. The shuttle valve, integrated in the cover, enables the automatic selection of the pilot line which has the higher pressure (priority line). The solenoid valve type DS3-TA must be ordered separately (see catalogue 41 150). - solenoid valve OFF = A B intercepted flow - solenoid valve ON = A B free flow

8.6 - Q cover for flow control function

8.7 - DP* cover for pressure control function

Functional diagrams	Description
$X \xrightarrow{P} A B T$ $X \xrightarrow{P} C X C X$ $X \xrightarrow{P} A B T$ $X \xrightarrow{P} A B T$ $X \xrightarrow{P} A B T$	Pressure control function with a built-in relief valve. - max. adjustment pressure DP4 = 140 bar - DP6 = 350 bar The top blanking plate code 1950591 must be ordered separately.
$\begin{array}{c} A \\ B \\ P \\ A \\ F \\ C \\ C$	Pressure control function with electrical unloading by means of DS3-SA2 solenoid valve (to be ordered separately - see catalogue 41 150). - solenoid valve OFF = unloading at minimum pressure - solenoid valve ON = pressure controlled by the built-in relief valve.
A B P T A P T T X A A B A A B T	Pressure control function with electrical unloading and two step pressure by means of the solenoid valves DS3-S2 (to be ordered separately - see catalogue 41 150), MCI*-SAT/10 (for 16, 25 and 32 sizes - to be ordered separately) and MCD*-SAT (for 40, 50 and 63 sizes to be ordered separately - see catalogue 61 200) - solenoid valve OFF = unloading at minimum pressure - solenoid valve ON side a = pressure controlled by the relief valve integrated in the cover - solenoid valve ON side b = pressure controlled by the relief valve (MCI* or MCD*)

Pressure control function with electrical control and three steps pressure by means of the solenoid valves **DS3-S3** (to be ordered separately - see catalogue 41 150), **MCI*-DT/10** (for 16 - 25 and 32 sizes - to be ordered separately) and **MCD*-DT/51** (for 40 and 50 sizes - to be ordered separately - see catalogue 61 200)

- solenoid valve OFF = pressure controlled by the cover relief valve.
- solenoid valve ON side a = pressure controlled by the relief valve on side b.
- solenoid valve ON side b = pressure controlled by the relief valve on side a.

8.8 - DPE* cover for pressure control function

Functional diagram	Description
$X \xrightarrow{P} \xrightarrow{A} \xrightarrow{B} T$	Pressure control function by means of PRED3 proportional valve (to be ordered separately see catalogue 81 210). - max. adjustment pressure DPE4 = 140 bar - DPE6 = 350 bar - proportional valve OFF = unloading at minimum pressure - proportional valve ON = proportional control of pressure

9 - OVERALL AND MOUNTING DIMENSIONS FOR CONTROL COVERS

9.1 - R type covers

x	⊢● ⊖		
	x	С	
	LP16R		

LP25R LP32R LP63R

	NOMINAL SIZE						
	16	25	32	63			
А	30	30	40	70			
В	65	85	100	180			
С	46	58	70	125			
D1	13,5	19	25	46			
D2	8,5	13	17	31			
E	19	17	22	35			
F	9,5	13,5	15	27,5			
L	67,5	87,5	102,5	182,5			
М	4	5	5	5			

ports ready for restrictors	port X					
restrictors	M6x8 M10x10					
Mass [Kg]	1,20	2,30	4,00	17,5		

-	
1	N. 4 fastening bolts (NOTE): 16 = M8x30 25 = M12x35 32 = M16x45 63 = M30x80
2	N. 1 sealing ring 90 Shore: 16 = OR type 2025 (6.07x1.78) 25 = OR type 2037 (9.25x1.78) 32 = OR type 2037 (9.25x1.78) 63 = OR type 2056 (14.00x1.78)
3	Locating pin: $16 = \emptyset 3x10$ $25 = \emptyset 5x14$ $32 = \emptyset 5x14$ $63 = \emptyset 6x14$
4	Identification label
5	Plug X: 1/4Ž BSP

NOTE: Fastening bolts class 12.9 ISO 4762 are recommended for the installation of the cover (to be ordered separately)

dimensions in mm

9.2 - Covers type D

LP16D LP25D LP32D LP40D LP50D

LP63D

	NOMINAL SIZE					
	16	25	32	40	50	63
А	30	30	40	40	50	70
В	65	85	100	125	140	180
B*	75	85	100	125	140	180
С	46	58	70	85	100	125
D1	13,5	19	25	31	31	46
D2	8,9	13	17	21	21	31
E	19	17	22	30	30	35
F	9,5	13,5	15	20	20	27,5
F*	19,5	13,5	15	20	20	27,5
G	52	60,2	65,2	73,2	82,7	111,5
Н	48	58	65,5	78	85,5	105,5
L	67,5	87,5	102,5	127,5	142,5	182,5
Μ	4	5	5	5	5	7

ports ready for restrictors	P, A						
restrictors	M6x8 M8x8						
Mass [Kg]	1,20	2,30	4,00	4,80	7,6	17,5	

1	N. 4 fastening bolts (NOTE): 16 = M8x30 25 = M12x35 32 = M16x45 40 = M20x50 50 = M20x60 63 = M30x80
2	n° 2 sealing rings 90 Shore : 16 = OR type 2025 (6.07x1.78) 25 = OR type 2037 (9.25x1.78) 32 = OR type 2037 (9.25x1.78) 40 = OR type 2050 (12.42x1.78) 50 = OR type 2050 (12.42x1.78) 63 = OR type 2056 (14x1.78)
3	Locating pin: $16 = \emptyset 3x10$ $25 = \emptyset 5x14$ $32 = \emptyset 5x14$ $40 = \emptyset 5x14$ $50 = \emptyset 6x14$ $63 = \emptyset 6x14$
4	Identification label
5	Mounting surface ISO 4401-03 (CETOP 4.2-4-03-350)

NOTE: Fastening bolts class 12.9 ISO 4762 are recommended for the installation of the cover (to be ordered separately)

dimensions in mm

9.3 - Covers type DZ

LP16DZ LP25DZ LP32DZ LP40DZ

	NOMINAL SIZE					
	16	25	32	40		
А	30	30	40	50		
В	65	85	100	125		
B*	75	85	100	125		
С	46	58	70	85		
D1	13,5	19	25	31		
D2	8,9	13	17	21		
E	19	17	22	30		
F	9,5	13,5	15	20		
F*	19,5	13,5	15	20		
G	52	60,2	65,2	84		
Н	48	58	65,5	78		
L	67,5	87,5	102,5	127,5		
М	4	5	5	5		

ports ready for restrictors M6x8		Ρ, Α,	, B, C	
Mass [Kg]	1,20	2,30	4,00	4,3

1	N. 4 fastening bolts (NOTE):16 = M8x3025 = M12x3532 = M16x4540 = M20x50				
2	n° 4 sealing rings 90 Shore : 16 = OR type 2025 (6.07x1.78) 25 = OR type 2037 (9.25x1.78) 32 = OR type 2037 (9.25x1.78) 40 = OR type 2050 (12.42x1.78)				
3	Locating pin: $16 = \emptyset 3x10$ $25 = \emptyset 5x14$ $32 = \emptyset 5x14$ $40 = \emptyset 5x14$				
4	Identification label				
5	Mounting surface ISO 4401-03 (CETOP 4.2-4-03-350)				

NOTE: Fastening bolts class 12.9 ISO 4762 are recommended for the installation of the cover (to be ordered separately)

dimensions in mm

9.4 - Covers type DF1

		NOMINAL SIZE					
	16	25	32	40	50		
A	40	40	40	50	50		
B*	80	85	102	125	140		
В	65	85	102	125	140		
С	46	58	70	85	100		
D1	13,5	19	25	31	31		
D2	8,5	13	17	21	21		
E	18	17	22	30	30		
F*	17	13,5	16	20	20		
F	9,5	13,5	16	20	20		
G	47,5	64	72,5	84	91,5		
н	48	58	66,5	78	85,5		
L	67,5	87,5	104,5	127,5	142,5		
М	4	5	5	5	5		
Ν	4,5	3,5	3,5	-	-		
	1						
Mass [Kg]	1,8	2,3	4	6,7	7,6		

1	N. 4 fastening bolts (NOTE): 16 = M8x30 25 = M12x35 32 = M16x45 40 = M20x60 50 = M20x60
2	N° 3 sealing rings 90 Shore : 16 = OR type 2037 (9.25x1.78) 25 = OR type 2037 (9.25x1.78) 32 = OR type 2037 (9.25x1.78) 40 = OR type 2050 (12.42x1.78) 50 = OR type 2050 (12.42x1.78)
3	Locating pin 16 = Ø3x10 40 = Ø5x14 25 = Ø5x14 50 = Ø6x14 32 = Ø5x14
4	Identification label
5	Mounting surface ISO 4401-03 (CETOP 4.2-4-03-350)

NOTE: Fastening bolts class 12.9 ISO 4762 are recommended for the installation of the cover (to be ordered separately)

D1 D2

1

Р

Ø1.5 Ø1.5

Z1 C

LP16DF2

LP25DF2

LP32DF2 LP40DF2

LP* SERIES 20

dimensions in mm

9.5 - Covers type DF2

A

	NOMINAL SIZE					
	16	25	32	40		
A	40	40	40	50		
В	65	85	102	125		
B*	80	85	102	125		
С	46	58	70	85		
D1	13,5	19	25	31		
D2	8,5	13	17	21		
E	18	17	22	30		
F	9,5	13,5	16	20		
F*	17	13,5	16	20		
G	48	61	68,7	81		
Н	48	58	65,5	71,2		
L	67,5	87,5	102,5	104,5		
М	4	5	5	5		

ports ready for restrictors M6x8		ŀ	Ą	
Mass [Kg]	1,8	2,3	4	6,7

1	N. 4 fastening bolts (NOTE):16 = M8x3025 = M12x3532 = M16x4540 = M20x60		
2	N° 3 sealing rings 90 Shore: OR type 2037 (9.25x1.78)		
3	Locating pin 16 = Ø3x10 32 = Ø5x14 40 = Ø5x14		
4	Identification label		
5	Mounting surface ISO 4401-03 (CETOP 4.2-4-03-350)		

NOTE: Fastening bolts class 12.9 ISO 4762 are recommended for the installation of the cover (to be ordered separately)

dimensions in mm

9.6 - Covers type Q

	¥
х	С
LP16Q	
LP25Q	
LP32Q	

(4)

(5)

		NOMINAL SIZE					
	16	25	32	40	50	63	
А	35	40	40	60	60	80	
В	65	85	100	125	140	180	
С	46	58	70	85	100	125	
D1	13,5	19	25	31	31	46	
D2	8,5	13	17	21	21	31	
E	18	17	22	30	30	45	
F	9,5	13,5	15	20	20	27,5	
L	67,5	87,5	102,5	127,5	142,5	182,5	
М	4	5	5	5	5	5	
R1	55,5 ÷ 63,5	62,5 ÷ 74	58,5 ÷ 73,5	38,5 ÷ 57	44,5÷66,5	52 ÷ 81	
R2	45÷ 51,5	45÷ 51,5	45÷ 51,5	44 ÷ 52	44 ÷ 52	165 ÷ 194	

ports ready for restrictors	port X					
	M5x8		М	6x8		M10x10
Mass [Kg]	1,6	3	5	8,9	11,7	18

LP40Q LP50Q LP63Q

4

1	N. 4 fastening bolts (NOTE):
	16 = M8x30 25 = M12x35
	$32 = M16x35 \qquad 40 = M20x70 50 - M20x70 \qquad 63 - M30x90$
2	n° 1 sealing ring 90 Shore: 16 – OP type 2025 (6.07x1.78)
	25 = OR type 2023 (0.07x1.78) 25 = OR type 2037 (9.25x1.78)
	32 = OR type 2037 (9.25x1.78)
	40 = OR type 2050 (12.42x1.78)
	63 = OR type 2050 (12.42x1.78)
3	
	16 = \emptyset 3x10 25 = \emptyset 5x14
	32 = Ø5x14 40 = Ø5x14
	50 = Ø6x14 63 = Ø6x14
4	Identification label
5	Stroke limiter
	clockwise rotation to reduce stroke
	16 = 1 turn: 1,25 mm - spanner 18
	32 = 1 turn: 1,25 mm - spanner 18
	40 = 1 turn: 2,00 mm - spanner 24
	50 = 1 turn: 2,50 mm - spanner 30
	63 = 1 turn: 2,00 mm - spanner 36
6	Locking nut:
	16 = spanner 18 25 = spanner 18 32 = spanner 18 40 = spanner 24
	50 = spanner 30 63 = spanner 36
7	Plug X:
	40 = 1/4Ž BSP
	50 = 1/4Z BSP
1	63 = 1/42 BSP

NOTE: Fastening bolts class 12.9 ISO 4762 are recommended for the installation of the cover (to be ordered separately)

7

dimensions in mm

9.7 - Covers type DP* and DPE*

			NOMIN	AL SIZE		
	16	25	32	40	50	63
А	40	40	40	50	50	70
В	65	85	100	125	140	180
B*	75	85	100	125	140	180
С	46	58	70	85	100	125
D1	13,5	19	25	31	31	46
D2	8,5	13	17	21	21	31
E	18	17	22	30	30	35
F	9,5	13,5	15	20	20	27,5
F*	19,5	13,5	15	20	20	27,5
G	52	64	71,5	84	91,5	102,7
н	48	58	65,5	78	85,5	105,5
L	67,5	87,5	102,5	127,5	142,5	182,5
М	4	5	5	5	5	5
N	24	25	25	25	25	35
R	45÷ 51,5	45÷ 51,5	45÷ 51,5	44 ÷ 52	44 ÷ 52	44 ÷ 52

|--|

DP* restrictors

	M5x6	M6x8				M8x8
X	Ø1,2	Ø1,2	Ø1,2	Ø2,0	Ø2,0	Ø2,0
C	Ø0,7	Ø0,7	Ø1,5	Ø1,2	Ø1,5	Ø1,5

DPE* restrictors

	M5x6	M6x8	M6x8	M6x8	M6x8
X	Ø0,8	Ø0,7	Ø1	Ø1	Ø1
C	Ø0,6	Ø0,6	Ø0,8	Ø0,8	Ø0,8
Z1	Ø6	Ø6	Ø6	Ø6	Ø6

1	N. 4 fastening bolts (NOTE):		Plug X: 1/4Ž BSP
	16 = M8x30 25 = M12x35 32 = M16x45 40 = M20x50 40 = M20x60 63 = M30x80	6	Mounting surface ISO 4401-03 (CETOP 4.2-4-03-350)
2	 2 90 Shore sealing rings : 16 = n° 3 OR type 2025 (6.07x1.78) 25 and 32 = n° 3 OR type 2037 (9.25x1.78) 40 and 50 = n° 3 OR type 2050 (12.42x1.78) 63 = n° 3 OR type 2056 (14.00x1.78) 3 Locating pin: 16 = Ø3x10 25, 32 and 40 = Ø5x14 50 and 63 = Ø6x14 	7	Pressure control valve
		8	Countersunk hex adjustment screw. Clockwise rotation to increase pressure 16 , 25 and 32 = spanner 5 40 , 50 and 63 = spanner 6
3		9	Locking nut: 16, 25 and 32 = spanner 17 10, 50 and 52 = spanner 10
4	4 Identification label		40, 50 and 63 = spanner 19

NOTE: Fastening bolts class 12.9 ISO 4762 are recommended for the installation of the cover (to be ordered separately)

10 - MONITORED LOGIC ELEMENTS

Monitored logic elements are made of a directional function cartridge valve and a cover with built-in inductive proximity sensor. The PNP type sensor with closed contact states the condition of A B intercepted flow.

10.1 - Identification code of monitored logic elements

10.2 - Characteristic Curves (values obtained with viscosity 36 cSt at 50°C)

10.3 - Functional diagram of cover D for directional control and check valve function

Functional diagram	Description
	Piloting of cartridge valve by means of solenoid valve type DS3-TA (to be ordered separately - see catalogue 41 150) - solenoid valve OFF = A B intercepted flow - solenoid valve ON = A B free flow
	Piloting of cartridge valve by means of connection plate code 1950751 to be ordered separately.

10.4 - Functional diagrams for cover Z for directional control and piloting of other cartridges

Functional diagram	Description
	Piloting of cartridge valve by means of solenoid poppet valve type DT03-3A (to be ordered separately - see catalogue 42 200). ISO 4401-03 manifold type DN6 (cod.0294329) that allows to intercept the flow from two lines, obtaining a tight or the free flow. - solenoid valve OFF = sealing tight - A B locked flow - solenoid valve ON = flow A B free flow
	Piloting of cartridge valve by means of connection plate code 1950751 to be ordered separately.

dimensions in mm

10.5 - OVERALL AND MOUNTING DIMENSIONS OF MONITORED LOGIC ELEMENTS

LCM16D-QD4 LCM25D-QD4 LCM32D-QD4 LCM40D-QD4 LCM50D-QD4

	NOMINAL SIZE				
	16	25	32	40	50
А	55	60	70	75	90
В	78,5	85	100	125	140
С	46	58	70	85	100
D1	13,5	19	25	31	31
D2	8,5	19	17	21	21
E	18	17	22	30	30
F*	19,5	13,5	15	20	20
F	9,5	13,5	15	20	20
G	52	60,2	67,7	80,2	87,7
Н	48	58	65,5	105	85,5
L	81	92	102,5	127,5	142,5
Μ	4	5	5	5	5
N	70	70	65	60	55
R	111	132	155	180	212

ports ready for restrictors M6x8.5	P, A B (on cover Z only)					
Mass [Kg]	2,1	3,3	5,3	9,5	14,5	

1	N. 4 fastening bolts (NOTE): 16 = M8x30			
2	n° 3 sealing rings 90 Shore : 16 = OR type 2025 (6.07x1.78) (for ND 16 there are only 2 OR) 25 and 32 = OR type 2037 (9.25x1.78) 40 and 50 = OR type 2050 (12.42x1.78)			
3	Locating pin: $16 = \emptyset 3x10$ $40 = \emptyset 5x14$ $25 = \emptyset 5x14$ $50 = \emptyset 6x14$ $32 = \emptyset 5x14$			
4	Identification label			
5	Mounting surface ISO 4401-03 (CETOP 4.2-4-03-350)			
6	Proximity sensor			
7	Connector for proximity sensor (to be ordered separately see par. 10.6)			
8	Cartridge valve always supplied with the cover			

NOTE1: fastening bolts class 12.9 ISO 4762 are recommended for cover installation (to be ordered separately)

NOTE2: for cartridge valve seat dimensions see par. 5

в

х

C

LCM25Z-QD4 LCM32Z-QD4

LCM40Z-QD4 LCM50Z-QD4 57

10.6 - Technical characteristics of proximity sensor and relevant connector

PROXIMITY SENSOR

PNP TYPE

Rated voltage	V DC	24	
Power supply voltage range	V DC	10 ÷ 30	
Absorbed current	mA	200	
Output	normally open contact		
Electric protection	polarity inversion short circuit overvoltage		
Electric connection	with connector		
Max operating pressure	bar	350	
Operating temperature range	°C	-25 / +80	
Class of protection according to CEI EN 60529 standards (atmospheric agents)		IP68	
Spool position LED (NOTE)		NO	

 $\ensuremath{\textbf{NOTE}}$: The led is placed in the connector and its light is YELLOW.

valve closed = closed contact (A B intercepted flow) valve open = open contact (A B free flow) ELECTRIC CONNECTOR (to be ordered separately) code: ECM3S / M12L / 10

Connector: pre-wired connector M12 - IP68 cable: with 3 conductors 0.34 mm² - length 5 mt - cable material: polyurethane resin (oil resistant)

LEDS:

GREEN LED: show the presence of power supply voltage to the connector. If the LED is off, the connector is not supplied. YELLOW LED: show the valve condition:

- valve at rest yellow LED on - green LED on

- switched valve yellow LED off - green LED off

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

ELECTRICAL DIAGRAM

TECHNICAL CHARACTERISTICS

ELECTRIC CONNECTORS SERIES 10

EN 175301-803 (ex DIN 43650 / ISO 4400)

type A

DESCRIPTION

- " The EC connectors, according to EN 175301-803, are in the model •AŽ configuration and are used mainly for the electrical connection of valve solenoids.
- ", When they are correctly installed and coupled they provide waterproof protection according to IEC EN 60529 standards, class of protection IP65.
- " The class of insulation is therefore in compliance with IEC 60664-1:2007specifications, operating voltage up to 250 Volt.
- ", The wire terminal block is removable from the external housing to allow the wire connections to the clamps, and to allow the electrical contacts can be turned through 90° (except version H) if required.
- " Four different types with specific functions are available:
- type **A**, connector two poles + ground type **B***, with LED (available voltages: 10÷50 and 70÷ 250V) type **D**, with bridge rectifier type **H**, with RC damping circuit
- " Type A is also available in gray colour, to differentiate the solenoids mounted on the side •AŽ or •BŽ.
- " They are supplied with M3 fixing screw and NBR gasket.

		type A	type B*	type D	type H
Voltage supply	V DC/AC	up to 230	10 ÷ 50 / 70 ÷ 250	up to 230	up to 230
Number of poles		2 + ground			
Current on connections: nominal maximum	A	10 16			
Contact resistance	m	4			
Maximum conductor size	mm	1,5			
Cable exit		Pg9 / Pg11 unified			
Electromagnetic compatibility (EMC)		according to 2004/108/CE			
Low voltage		according to 2006/95/CE			
Protection degree		IP 65 - IEC 60529			
Insulation class		class C (IEC 60664-1:2007-04)			
Operating temperature	°C	-40 / +90			

49 000/111 ED

1 - IDENTIFICATION CODE

2 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

49 000/111 ED

ECL POWER SAVING DEVICE FOR ON-OFF SOLENOID VALVES SERIES 20

PLUG VERSION

OPERATING PRINCIPLE

TECHNICAL CHARACTERISTICS

Power supply	V DC	8 ÷ 30 Ripple included
Max current	A	2,60
Absorbed current with valve not switched	mA	40
Current absorbed by the switching command (at 30 VDC)	mA	10 max
Full power feeding time	ms	50
Holding current regulating range	% I MAX	50 ÷ 100
Holding current default	% I MAX	40
Connector type		DIN 43650
Electromagnetic compatibility (EMC) - emissions CEI EN 61000-6-4 - immunity CEI EN 61000-6-2		according to 2004/108/CE standards (see paragraph 5 - NOTE)
Protection to atmospheric agents		IP 65 - 67
Operating temperature range	°C	-20 / +70
Mass	kg	0,10

49 300/310 ED

1 - IDENTIFICATION CODE

The ECL connector is a digital amplifier controlling open loop on-off valves directly from PLC.

The unit supplies a set current independently from temperature variations or load impedence.

Setting is possible by buttons and display inside the case, or with a PC by RS232 with the software EDC-PC/10, (see paragraph 6.2).

2 - FUNCTIONAL SPECIFICATIONS

2.1 - Electric power supply

The connector requires a power supply of 24V DC (pin 1 and 2). The power supply voltage must be rectified and filtered, and it has not to be higher than 6A.

N.B. The value of the power supply voltage on the connector must be higher than the rated working voltage of the solenoid to be controlled.

The power required by the card depends on the power supply voltage and on the maximum value of the supplied current.

2.2 - Electrical protection

The connector is protected against overvoltage and polarity inversion. On the output a protection against any short circuit is foreseen.

2.3 - Functioning

This device operates by feeding the solenoid valve at the max current value for a time sufficient to guarantee the complete valve energizing (50 ms). The current is therefore automatically reduced at holding.

IMAX = max current

IMAN = holding current

default vales: IMAN = 1A threshold : 200 mV freq: 200 Hz

3 - SIGNALS

3.1 - POWER ON (Power supply)

Displays indicate the connector is ON and with +24 V DC.

4 - ADJUSTMENTS

There are two way adjustments: variables view and parameters editing. The first one enables the real time monitoring of the control values, for both required and read current, on both channels. The second modality enables the operating parameters view and editing.

4.1 - Variables view

The card is switched on at the variables view modality, and it shows the first variable value, that is the C1 parameter, current solenoid.

- C1: current supplied from ECL to the solenoid read on real time
- U1: Threshold reference signal. 9.9 = Threshold active

4.2 - Parameters editing

To access the parameter editing, press the key (2) for at least 3 seconds.

The first parameter displayed is G1. To modify it, press the key (1) for two seconds, until the display starts blinking. Use the key (2) to increase the value and the key (1) to decrease it. To save the new value, press both the keys. The display stops blinking.

Pressing the key (2) again is possible to scroll all the parameters. To modify the other parameters, repeat the steps above-mentioned for the G1 parameter.

The variables that can be selected are:

- G1: I MaxŽ current, expressed in milliAmpere.
 It sets the maximum current to the solenoid, when the reference signal is at the maximum value. It is used to limit the maximum value of the supplied current.
 Default value of Imax = 1000 mA
 Range = 50 ÷ 100% of Imax
- Fr: PWM frequency, in Hertz. It sets the PWM frequency, which is the pulsating frequency of the solenoid current. Default value = 200 Range = 100 ÷ 500 Hz

DISPLAY VIEW EXAMPLE:

REFERENCE (V)	VARIABLE U1 (V)	VARIABLE C1
0	00	닉[]. (mA)
10	10.	2.6 (A)

5 - INSTALLATION

The connector type electronic unit is suitable for direct assembly on the solenoid of the relative on-off valve. With the 4-core connector for supply and for the reference signal.

NOTE: To observe EMC requirements it•s important that the control unit electrical connection is in compliance with the wiring diagram of chapter 7.

As a general rule, the valve and the electronic unit connection wires must be kept as far as possible from interference sources as power wires, electrical motors, inverters and electrical switches.

In environments where there are critical electromagnetic interferences, a complete protection of the connection wires can be requested.

6 - START UP, CONTROL SETTINGS AND SIGNAL

6.1 - Set up

Settings can be changed by either acting on the (1) and (2) keys located on the card front panel, or using the EDC-PC software kit.

6.2 - EDC-PC/10 Software (code 3898301001)

The relevant hardware and software kit (to be ordered separately) allows to read the values and to set the connector easily.

The software communicates, through a flat cable, to the ECL; the connector is behind the protecting gate.

The EDC-PC/10 software compatibility is guaranteed only on Windows $XP^{\ensuremath{\mathbb{R}}}$ operating systems.

7 - WIRING DIAGRAM

8 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

49 300/310 ED

ECF

SERIES 20

OPERATING PRINCIPLE

PLUG VERSION

AMPLIFIED CONNECTOR FOR

FAST COMMAND (RAPID)

ON-OFF VALVES

TECHNICAL CHARACTERISTICS

Power supply	V DC	24 ÷ 30 ripple included
Required power	W	min 50 - max 150 (see paragraph 2.1)
Output current	mA	max 3000 (see paragraph 1)
Power supply electrical protections		overload over 33V polarity inversion
Output electrical protections		Short-circuit
Analogue electrical protections		up to 30 V DC
Reference signal	V DC	24
Connector type		DIN 43650
Electromagnetic compatibility (EMC) - emissions CEI EN 61000-6-4 - immunity CEI EN 61000-6-2		according to 2004/108/CE standards (see paragraph 5 - NOTE 1)
Protection to atmospheric agents		IP 65 - 67
Operating temperature range	°C	-20 / +70
Mass	kg	0,10

49 310/113 ED

1 - IDENTIFICATION CODE

The ECF connector is a digital amplifier controlling open loop on-off valves.

The unit supplies a set current independently from temperature variations or load impedance.

A quick solenoid energizing is possible in two different ways, according to the used coil type (12V o 24V)

Setting is possible by buttons and display inside the case, or with a PC by RS232 with the software EDC-PC, (see paragraph 6.2).

2 - FUNCTIONAL SPECIFICATIONS

2.1 - Electric power supply

The connector requires a power supply of 24V DC (terminals 1 and 2). The power supply voltage must be rectified and filtered, and it has not to be higher than 6A.

N.B. The value of the power supply voltage on the connector must be higher than the rated working voltage of the solenoid to be controlled.

The power required by the card depends on the power supply voltage and on the maximum value of the supplied current.

2.2 - Electrical protection

The connector is protected against overvoltage and polarity inversion. On the output a protection against any short circuit is foreseen.

2.3 - Functioning with 12V coils

With the employment of 12V coils, the ECF valve allows a quick solenoid energizing (G1), overboosting the solenoid just the time to energize it (PI). Then, the voltage will be lowered at the rated value. The de-energizing is fast, and is 3 ms.

At overboosting time, the power-supply unit must be able to provide a 6 A intensity current strength.

2.4 - Functioning with 24V coils

24V coils do not require overboosting. A quick de-energizing is guaranteed.

3 - SIGNALS

3.1 - POWER ON (Power supply)

Displays indicate the connector is ON and with +24 V DC.

4 - ADJUSTMENTS

There are two way adjustments: variables view and parameters editing. The first one enables the real time monitoring of the control values, for both required and read current, on both channels. The second modality enables the operating parameters view and editing.

4.1 - Variables view

The card is switched on at the variables view modality, and it shows the first variable value, that is the C1 parameter, current solenoid.

C1: current supplied from ECF to the solenoid read on real time

4.2 - Parameters editing

To access the parameter editing, press the key (2) for at least 3 seconds.

The first parameter displayed is G1. To modify it, press the key (1) for two seconds, until the display starts blinking. Use the key (2) to increase the value and the key (1) to decrease it. To save the new value, press both the keys. The display stops blinking.

Pressing the key (2) again is possible to scroll all the parameters. To modify some the parameter, repeat the steps above-mentioned for the G1 parameter.

DISPLAY VIEW EXAMPLE:

REFERENCE (V)	VARIABLES (Ampere)
0	0.0 (mA)
24	(A) 3 .5

The variables that can be selected are:

G1: •I MaxŽ current, expressed in Ampere.

It sets the maximum current to the solenoid, when the reference signal is at the maximum value +24 V. It is used to limit the maximum value of the supplied current.

Default value = 2000 mA

Range =
$$0 \div 3000 \text{ mA}$$

PI: Overboosting time.

It determines the regulation of solenoid overboosting time and it is measured by milliseconds.

Default value = 40 ms

Range = $0 \div 500$ ms

Fr: PWM frequency, in Hertz.

It sets the PWM frequency, which is the pulsating frequency of the solenoid current. Default value = 200

Range = 100 ÷ 500Hz

5 - INSTALLATION

The connector type electronic unit is suitable for direct assembly on the solenoid of the relative on-off valve. With the 4-core connector for supply and for the reference signal.

NOTE: To observe EMC requirements it•s important that the control unit electrical connection is in compliance with the wiring diagram of chapter 7.

As a general rule, the valve and the electronic unit connection wires must be kept as far as possible from interference sources as power wires, electrical motors, inverters and electrical switches.

In environments where there are critical electromagnetic interferences, a complete protection of the connection wires can be requested.

6 - START UP, CONTROL SETTINGS AND SIGNAL

6.1 - Set up

Settings can be changed by either acting on the (1) and (2) keys located on the card front panel, or using the EDC-PC software kit.

6.2 - EDC-PC Software (code 3898301001)

The relevant hardware and software kit (to be ordered separately) allows to read the values and to set the connector easily.

The software communicates, through a flat cable, to the ECF; the connector is behind the protecting gate.

The EDC-PC software compatibility is guaranteed only on Windows XP^{\otimes} operating systems.

7 - WIRING DIAGRAM

8 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

1 - OVERALL AND MOUNTING DIMENSIONS PMRQ3-AI4G/20 (cod. 1961211)

2 - OVERALL AND MOUNTING DIMENSIONS PMRQ5-AI5G/20 (cod. 1961221)

PMRQ* SUBPLATES FOR PRESSURE CONTROL VALVES

ISO 6264 -10 -17-*- 97 dimensions in mm (CETOP 4.4.2 - 2 - R10 - 350) - 24 19.1 -114.3 -- 63.5 -- 44.5 - 25.4 6.4 19 ø20 ø14 \odot 31.7 73 1 184 146 \odot - 152 42 + Ports on rear. Threading of ports: P-T 1Ž 1/4 BSP; X 1/4Ž BSP p max 350 bar Mass: kg 7,1

3 - OVERALL AND MOUNTING DIMENSIONS PMRQ7-AI7G/10 (cod. 1960051)

4 - OVERALL AND MOUNTING DIMENSIONS PMRQA5-AI5G/10 (cod. 1960070)

PMSZ* SUBPLATES FOR S - Z VALVES

5 - OVERALL AND MOUNTING DIMENSIONS PMSZ3-AI4G/20 (cod. 1961231)

6 - OVERALL AND MOUNTING DIMENSIONS PMSZ5-AI6G/20 (cod. 1961241)

PMRPC* SUBPLATES FOR FLOW CONTROL VALVES

7 - OVERALL AND MOUNTING DIMENSIONS PMRPC1-AI3G/10 (cod. 1961045)

8 - OVERALL AND MOUNTING DIMENSIONS PMRPC1-AL3G/10 (cod. 1961051)

PMRPC* SUBPLATES FOR FLOW CONTROL VALVES

10 - OVERALL AND MOUNTING DIMENSIONS PMRPC3-AI6G/10 (cod. 1960511)

11 - OVERALL AND MOUNTING DIMENSIONS PMRPCQ2-AI4G/10 (cod. 1960526)

12 - OVERALL AND MOUNTING DIMENSIONS PMRPCQ3-AI6G/10 (cod. 1960423)

PMMD SUBPLATES FOR ISO 4401-03 (CETOP 03) VALVES

dimensions in mm ISO 4401-03-02-0-05 (CETOP 4.2-4-03-350) ø6 ø10 10 ⊕ ـ 40 70 95 80 ŧ. 18.5 \odot ÷÷ Ф 7.5 9.5 15 -9 7.5 -50 - 30 -25 65 41-Ports on rear. Threading on ports: P - T - A - B 3/8Ž BSP p max 350 bar Mass: kg 1,2

13 - OVERALL AND MOUNTING DIMENSIONS PMMD-AI3G/20 (cod. 1961261)

15 - OVERALL AND MOUNTING DIMENSIONS PMD4-AL4G/10 (cod. 1960981)

16 - OVERALL AND MOUNTING DIMENSIONS PMD4-AI4G/20 (cod. 1961271)

PME4 SUBPLATES FOR CETOP P05 VALVES

17 - OVERALL AND MOUNTING DIMENSIONS PME4-AI5G/10 (cod. 1961181)

PME4 SUBPLATES FOR CETOP P05 VALVES

18 - OVERALL AND MOUNTING DIMENSIONS PME4-AL5G/10 (cod. 1961201)

PME07 SUBPLATES FOR ISO 4401-07 (CETOP 07) VALVES

19 - OVERALL AND MOUNTING DIMENSIONS PME07-AI6G/10 (cod. 1961071)

20 - OVERALL AND MOUNTING DIMENSIONS PME07-AL6G/10 (cod. 1961111)

PME5 SUBPLATES FOR ISO 4401-08 (CETOP 08) VALVES

21 - OVERALL AND MOUNTING DIMENSIONS PME5-AL8G/10 (cod. 1961141)

Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

This series of modular subplates has been designed to make hydraulic circuits and can be used directly on power packs or on any other section of the machine.

The subplates are assembled by means of 4 tie-rods with seal seats incorporated in the subplate.

The above assembly achieves compact units (including pressure and discharge manifolds): one face per subplate is used for connection to services and the other to mount ISO 4401-03 (CETOP 03) valves.

Complex circuits can also be set up using modular valves.

The recommended mounting configuration for **P2*** subplates on hydraulic power packs is with the main axis positioned vertically to obtain the bundle of pipes to utilities in two vertical rows; however assembly is not restricted to this configuration.

P2* MODULAR SUBPLATES FOR ISO 4401-03 (CETOP 03) VALVES

p max 350 bar

Q max 50 l/min

TECHNICAL SPECIFICATIONS

Maximum operating pressure - ports P - A - B - port T	bar	see paragraph 11 140
Maximum flow	l/min	50
Port dimensions: P - pressure T - lower drainage T - upper drainage A/B - users	BSP	3/8Ž 1/2Ž 3/8Ž 3/8Ž
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	cSt	25
Recommended viscosity	According to IS	O 4406:1999 class 20/18/15

1 - IDENTIFICATION CODE

2 - OVERALL AND MOUNTING DIMENSIONS P2D/21 (cod. 1560121)

3 - OVERALL AND MOUNTING DIMENSIONS P2D-F/21 (cod. 1560122)

5 - OVERALL AND MOUNTING DIMENSIONS P2D-Z/21 (cod. 1560025)

6 - IDENTIFICATION CODE subplates with incorporated pressure control valve

7 - CHARACTERISTIC CURVES FOR P2D-M* E P2T-M* SUBPLATES WITH PRESSURE CONTROL VALVE INCORPORATED (values obtained with viscosity of 36 cSt at 50°C)

ADJUSTMENT

PRESSURE DROPS T1 T ∆p [bar] 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00 0 10 20 30 40 50 Q [l/min] MINIMUM CONTROLLED PRESSURE

8 - OVERALL AND MOUNTING DIMENSIONS P2D-M*/ 33

9 - OVERALL AND MOUNTING DIMENSIONS P2T-M* /33

10 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

11 - PRESSURE LIMIT ON P

Depending on the tie-rod type and on the number of assembled suplates it is necessary to pay attention to the maximum pressure on P in order to avoid extruding the O-Rings.

n° of assembled subplates	Threaded bar class B7 DIN 975	Stud class 8.8 UNI 5911	Stud class 12.9
2	350 bar	350 bar	350 bar
3	300 bar	350 bar	350 bar
4	250 bar	300 bar	350 bar
5	200 bar	250 bar	300 bar
6	150 bar	200 bar	250 bar
Tightening torque	8 Nm	8 Nm	12 Nm

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

52 000/110 ED

- The P2A*L series of manifolds is designed for connection in parallel of two or more ISO 4401-03 (CETOP 03) valves.
- The monocast design enables the simple creation of circuits without the use of pipes and fittings, thereby reducing overall dimensions to a minimum.
- All sections feature a common pressure and discharge fitting on both ends of the subplate.
- Maximum flow rate can be increased up to double the output if the sub-plates are powered at both ends.
- Each section is fitted with work ports A and B positioned on the side of the sub-plate.
- Subplates are available in aluminium.

p max 210 bar Q max 50 l/min

TECHNICAL SPECIFICATIONS

Maximum operating pressure - ports P - A - B - port T	bar	210 140
Maximum flow	l/min	50
Port dimensions: P - pressure T - lower drainage A/B - users	BSP	1/2" 1/2" 3/8"
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	cSt	25
Recommended viscosity	According to IS	O 4406:1999 class 20/18/15

1 - IDENTIFICATION CODE

	Ρ	2	A	L	1	1	1	
Manifold —————								Serial No. (from 10 to 19 overall and mounting dimensions remain unchanged)
Dimension 2 for ISO 4401-03 —— (CETOP 03) valves								Side ports
							- N	lo. of valve mounting positions:
Aluminium version							2	= 2 mounting positions
							3	= 3 mounting positions
							4	= 4 mounting positions
							5	= 5 mounting positions
							6	= 6 mounting positions

P2A*L

MANIFOLDS FOR ISO 4401-03 (CETOP 03) VALVES WITH SIDE PORTS

SERIES 11

2 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

52 110/110 ED

- The P2X*M series of manifolds is designed for connection in parallel of two or more ISO 4401-03 (CETOP 03) valves.
- The monobloc design enables the simple creation of circuits without the use of pipes and fittings, thereby reducing overall dimensions to a minimum.
- Subplates are arranged for the installation of a pressure control valve with cartridge.
- Each section is fitted with work ports A and B positioned on the rear of the subplate.
- Subplates are fitted with additional rear ports P and T.
- Subplates are made of cast iron.

P2X*M MANIFOLDS FOR ISO 4401-03 (CETOP 03) VALVES WITH PORTS ON REAR SERIES 10

p max 350 barQ max 100 l/min

TECHNICAL SPECIFICATIONS

Maximum operating pressure - ports P - A - B - port T	bar	350 140
Maximum flow	l/min	100
Port dimensions: P - pressure T - drainage B - users A - drainage	BSP	1/2"
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	cSt	25
Recommended viscosity	According to IS	O 4406:1999 class 20/18/15

1 - IDENTIFICATION CODE

P2X*M SERIES 11

2 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

- ", This series of modular subplates has been designed to make hydraulic circuits and can be used directly on power packs or on any other section of the machine.
- ", The subplates are assembled by means of 4 tie-rods with seal seats incorporated in the subplate.
- ", The above assembly achieves compact units (including pressure and discharge manifolds): one face per subplate is used for connection to services and the other to mount ISO 4401-05 (CETOP 05) or ISO 4401-03 (CETOP 03) valves.
- " Complex circuits can also be set up using modular valves.
- ", The recommended mounting configuration for **P4D** subplates on hydraulic power packs is with the main axis positioned vertically to obtain the bundle of pipes to utilities in two vertical rows; however, assembly is not restricted to this configuration.

P4D* MODULAR SUBPLATES FOR ISO 4401-05 (CETOP 05) VALVES SERIES 21

p max 350 barQ max 100 l/min

TECHNICAL SPECIFICATIONS

Maximum operating pressure - ports P - A - B - port T	bar	see paragraph 8 140	
Maximum flow	l/min	100	
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	cSt	25	
Recommended viscosity	According to ISO 4406:1999 class 20/18/15		

1 - IDENTIFICATION CODE

2- OVERALL AND MOUNTING DIMENSIONS P4D-F/21 (cod. 1561441)

3 - OVERALL AND MOUNTING DIMENSIONS P4D-P/21 (cod. 1561461)

P - T THREADED PORTS SUBPLATE, WITH MOUNTING INTERFACE FOR dimensions in mm ISO 4401-03 (CETOP 03) VALVE AND SIDE PORTS OF 3/8Ž BSP 54 (33) А В (2) 2 đ έþ 40 Т Ρ 1/2" BSP 3/8" BSP 38.5 13.5 58 ٠ 29 Ρ т (1)-(22) 120 22 36 80 1/2" BSP (clearance hole ø 19) (3) N°4 M6x10 N°4 ø9 (7) (16.5) ¢ NOTE: The subplate is supplied with O-Ring in NBR 90 Shore 42 66 t 21.5 1 Mounting surface ¢ t 7 -2 OR seat 3100 (25.07x2.72) (23.5) 23.5 73 3 Holes for possible mounting of P2D subplates 10 100 - (10) Mass: kg 3,8

4 - OVERALL AND MOUNTING DIMENSIONS P4D-D3/21 (cod. 1561451)

5 - OVERALL AND MOUNTING DIMENSIONS P4D-D3P/21 (cod. 1561481)

P4D* SERIES 21

6 - OVERALL AND MOUNTING DIMENSIONS P4D-M/21

7 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

8 - MAXIMUM PRESSURe ON P

Depending on the tie-rod type and on the number of assembled suplates it is necessary to pay attention to the maximum pressure on P in order to avoid extruding the O-Ring.

No. of assembled subplates	Threaded bar class B7 DIN 975	Stud class 8.8 UNI 5911	Stud class 12.9
2	350 bar	350 bar	350 bar
3	300 bar	350 bar	350 bar
4	250 bar	300 bar	350 bar
5	200 bar	250 bar	300 bar
6	150 bar	200 bar	250 bar
Tightening torque	20 Nm	20 Nm	30 Nm

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com
53 200/110 ED

RM4*-MP SUBPLATE WITH PRESSURE RELIEF VALVE SERIES 30

- " The RM4*-MP subplate includes a pressure relief valve with P and T threaded ports.
- " It is used as mounting surface for P2D and P4D subplates on power packs.
- " It is available in four pressure adjustment ranges up to 350 bar.
- " It is normally supplied with a countersunk hex adjustment screw, locking nut and maximum adjustment limiting device.

THREADED PORTS

- p max 350 bar
- Q max 100 l/min

1 - OVERALL AND MOUNTING DIMENSIONS

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

53 300/110 ED

P4D-RQM5 MODULAR SUBPLATE WITH PRESSURE RELIEF VALVE AND UNLOADING SOLENOID VALVE SERIES 30

p max 350 barQ max 250 l/min

OPERATING PRINCIPLE

- The P4D-RQM5 is a compact group that includes a pressure relief valve and it is used as mounting surface for P2D and P4D subplates.
- It also includes a solenoid valve for venting of the total flow at a minimum pressure value.
- It is available in two pressure adjustment ranges up to 350 bar.
- It is normally supplied with a hexagonal head adjustment screw. Upon request, it can be equipped with a SICBLOC adjustment knob on the main pressure control.

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

bar	350
l/min	250 120 10
°C	-20 / +50
°C	-20 / +80
cSt	10 ÷ 400
According to ISO 4406:1999 class 20/18/15	
cSt	25
kg	10
	bar I/min °C °C cSt According t class cSt kg

NOTE: for the solenoid valve DS3 characteristics see catalogue 41 150

HYDRAULIC SYMBOL

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

NOTE: The maximum flow deliverable to P1 port is 120 l/min (for P2D and P4D modular subplates). The maximum flow through the pressure relief valve (additional 3/4" BSP P port) is 250 l/min.

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

5 - ADJUSTMENT KNOB

The P4D-RQM5 valves can be equipped with a SICBLOC adjustment knob. To operate it, push and rotate at the same time. To request this option, add: /M (see par.1).

6 - ELECTRIC CONNECTORS

The solenoid valves are never supplied with connector. Connectors must be ordered separately. For the identification of the connector type to be ordered, please see catalogue 49 000.

7 - MANUAL OVERRIDE, BOOT PROTECTED: CM

Whenever the solenoid valve installation may involve exposure to atmospheric agents or utilization in tropical climates, use of the manual override, boot protected, is recommended.

Add the suffix **CM** to request this device (see paragraph 1). For overall dimensions see catalogue 41 150.

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

PE BLANKING PLATE

p max 350 bar

1 - OVERALL AND MOUNTING DIMENSIONS PE-MD1/20 (cod. 1950591)

2 - OVERALL AND MOUNTING DIMENSIONS PE-C/PA/MD1/20 (cod. 1950751)

3 - OVERALL AND MOUNTING DIMENSIONS PE-C/PB/MD1/20 (cod. 1950601)

4 - OVERALL AND MOUNTING DIMENSIONS PE/D4-M (cod, 1950042)

5 - OVERALL AND MOUNTING DIMENSIONS PC-D4/MD1-M (cod. 1950222)

NOTE: On request, plates can be supplied with the O-Rings in viton. To order it, please indicate the letter /V at the end of the identification code of the plate.

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111

Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

61 100/112 ED

MOUNTING SURFACE

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

Maximum operating pressure	bar	320	
Minimum controlled pressure	see p diagram.		
Maximum flow rate	l/min	20	
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25	
Mass: PRM2-PT and PRM2-BT PRM2-DT	kg	0.85 1	

PRM2 DIRECT OPERATED PRESSURE RELIEF VALVE SERIES 10

MODULAR VERSION ISO 4401-02 (CETOP R02)

- p max 320 bar
- Q max 20 l/min

OPERATING PRINCIPLE

- " The PRM2 valve is a direct operated pressure relief valve made as a modular version with mounting surface according to the ISO 4401 (CETOP RP 121H) standards.
- " It can be assembled with all ISO 4401-02 (CETOP R02) modular valves without use of pipes, using suitable tie-rods or bolts.
- ", It is available in versions for single relief on P or B with discharge in T, or two independent relief on A and B with discharge in T, all with three different pressure adjustment ranges.
- ", This valve is normally used as a hydraulic circuit pressure limiting device or as a limiting device of the pressure peaks generated during the movement of hydraulic actuators.
- " It is supplied with a countersunk hex adjustment screw and locking nut.

HYDRAULIC SYMBOLS

2 - CHARACTERISTIC CURVES

4 - OVERALL AND MOUNTING DIMENSIONS

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V).

For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

CONFIGURATIONS (see Hydraulic symbols table)

- "•SPŽ: controls the pressure on line P with discharge in T.
- "•SATŽ: controls the pressure on line A with discharge in T.
- , •SBTŽ: controls the pressure on line B with discharge in T.

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

Maximum operating pressure	bar	350
Minimum controlled pressure	see p	o diagram.
Maximum flow rate in controlled lines Maximum flow rate in the free lines	l/min	50 75
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass: MCD-SP / MCD-SAT / MCD-SBT / MCD-SB MCD-DT / MCD-D	kg	1,4 2,0

MCD DIRECT OPERATED PRESSURE RELIEF VALVE SERIES 51

MODULAR VERSION ISO 4401-03 (CETOP 03)

- p max 350 bar
- Q max (see table of performances)

OPERATING PRINCIPLE

- " It can be assembled with all ISO 4401-03 (CETOP 03) modular valves without use of pipes, using suitable tie-rods or bolts.
- " It is available in versions for single adjustment on one control line, or dual on two control lines and with four different pressure adjustment ranges.
- " This valve is normally used as a hydraulic circuit pressure limiting device or as a limiting device of the pressure peaks generated during the movement of hydraulic actuators.
- " It is normally supplied with a hexagonal head adjustment screw, locking nut and limitation of the maximum adjustment travel.
- " •DTŽ: controls the pressure on lines A-B with discharge in T.
- "•DŽ: controls the pressure on lines A-B with crossed discharges

HYDRAULIC SYMBOLS

61 200/110 ED

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111

Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

61 220/110 ED

MOUNTING INTERFACE

CONFIGURATIONS (see Hydraulic symbols table)

- " •SPŽ: controls the pressure on line P with discharge in T.
- " •SATŽ: controls the pressure on line A with discharge in T.
- " •SBTŽ: controls the pressure on line B with discharge in T.

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

Maximum operating pressure	bar	350
Minimum controlled pressure	see p	o diagram.
Maximum flow rate in controlled lines and in the free lines	l/min	75
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass: MRQ-SP / MRQ-SAT / MRQ-SBT / MRQ-SB MRQ-DT / MRQ-D	kg	1,4 2,1

PILOT OPERATED PRESSURE RELIEF VALVE

SERIES 51

MODULAR VERSION ISO 4401-03 (CETOP 03)

p max 350 bar
 Q max 75 l/min

OPERATING PRINCIPLE

", It is available in versions for single adjustment on one control line or dual on two control lines and with four different pressure adjustment ranges.

- " This valve is normally used as a hydraulic circuit pressure limiting device.
- " It is normally supplied with a hexagonal head adjustment screw, locking nut and limitation of the maximum adjustment travel.
- " •DTŽ: controls the pressure on lines A-B with discharge in T.
- " •DŽ: controls the pressure on lines A-B with crossed discharges.
- "•SBŽ: controls the pressure on line B with discharge in A.

HYDRAULIC SYMBOLS

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

PBM3 BACKPRESSURE VALVE SERIES 10

MODULAR VERSION ISO 4401-03 (CETOP 03)

p max 350 bar

Q max (see table of performances)

OPERATING PRINCIPLE

 PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

 Maximum operating pressure
 bar

Maximum operating pressure	bar	350
Check valve cracking pressure	bar	3,5
Max. flow on check valve B B1 (p 8 bar)	bar	50
Maximum flow rate in controlled line B1 B Maximum flow rate in the free lines P, A, T	l/min	50 75
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass:	kg	1,6

HYDRAULIC SYMBOL

61 260/110 ED

PBM3 SERIES 10

1 - IDENTIFICATION CODE

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

61 310/214 ED

MOUNTING SURFACE

PILOT OPERATED PRESSURE RELIEF VALVE SERIES 10

MODULAR VERSION ISO 4401-05 (CETOP 05)

p max 350 barQ max 120 l/min

OPERATING PRINCIPLE

- ", The PRM5 valve is a pilot operated pressure relief valve made as a modular version with mounting surface according to ISO 4401 (CETOP RP121H) standards.
- " It can be assembled with all ISO 4401-05 modular valves without the use of pipes, using suitable tie-rods or bolts.
- ", Versions are available for single adjustment on one control line, or dual on two control lines and with four different pressure adjustment ranges.
- " This valve is used as a hydraulic circuit pressure limiting device.
- " It is supplied with an hexagonal head adjustment screw and locking nut. It is also available with knob.

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

Maximum operating pressure	bar	350
Minimum controlled pressure	bar	see p - Q diagram
Max flow	l/min	120
Ambient temperature range	°C	-20 / +60
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass: PRM5-PT, -AT, -BT PRM5-DT	kg	2,8 3

HYDRAULIC SYMBOLS

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

PILOT OPERATED PRESSURE RELIEF VALVE SERIES 10

MODULAR VERSION ISO 4401-07 (CETOP 07)

p max **350** bar

Q max **300** l/min

OPERATING PRINCIPLE

- ", The PMR7 valve is a pilot operated pressure relief valve made as a modular version with a mounting surface according to ISO 4401 (CETOP RP 121H) standards.
- ", It can be assembled with all ISO 4401-07 (CETOP 07) modular valves without the use of pipes, using suitable tie-rods or bolts.
- " It is available in the type for single adjustment on line P and discharge in T with two pressure adjustment ranges.
- " This valve is normally used as a hydraulic circuit pressure limiting device.
- " It is normally supplied with an adjustment screw.

Maximum operating pressure bar 350 Maximum flow rate l/min 300 Ambient temperature range °С -20 / +50 Fluid temperature range °С -20 / +80 Fluid viscosity range cSt 10 ÷ 400 According to ISO 4406:1999 Fluid contamination degree class 20/18/15 Recommended viscosity cSt 25 Mass: 8,5 kg

HYDRAULIC SYMBOL

61 410/110 ED

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

CONFIGURATIONS (see Hydraulic symbols at par.1)

- " MZD*: pressure reduction on line P, drainage connected with line T.
- " MZD*/A and MZD*/RA: pressure reduction on line A toward the actuator and maximum pressure in line B, drainage connected with line T.
- " MZD*/B and MZD*/RB: pressure reduction on line B toward the actuator and maximum pressure in line A, drainage connected with line T.

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

bar	350 10
l/min	50 75 0,08
°C	-20 / +50
°C	-20 / +80
cSt	10 ÷ 400
According to ISO 4406:1999 class 20/18/15	
cSt	25
kg	1,4
	bar I/min °C °C cSt According t class cSt kg

MZD

DIRECT OPERATED THREE-WAY PRESSURE REDUCING VALVE WITH FIXED OR VARIABLE ADJUSTMENT

MODULAR VERSION ISO 4401-03 (CETOP 03)

p max 350 bar

Q max (see table of performances)

OPERATING PRINCIPLE

", The MZD valve is a three-way spool type direct operated pressure reducing valve. It is normally open in the rest position and the hydraulic fluid passes freely from the P1 line to the P line.

The spool is subjected to the line P pressure on one side, and on the other side by the adjustment spring. When the pressure in line P exceeds the value set by the spring, the valve closes until the pressure in P (reduced) equals the calibrated value.

- ", The valve construction provides good adjustment sensitivity with reduced drainage flow. The drainage is connected to line T inside the valve.
 - ", The three-way design provides protection of the secondary circuit from pressure surges since it allows a reverse flow from the actuator to the T discharge line.
 - " It is made as a modular version with ports according to the ISO 4401 (CETOP RP 121H) standards and can be assembled quickly, without use of pipes, under the ISO 4401-03 (CETOP 03) solenoid valves.
 - ", The variable adjustment version is supplied with a hexagonal head adjustment screw. Upon request, it can be equipped with a SICBLOC adjustment knob.
 - " The fixed adjustment version is available set at value 20, 25 or 30 bar pressure.

62 200/110 ED

1 - IDENTIFICATION CODE OF MZD VARIABLE ADJUSTMENT VERSION

2 - MZD VARIABLE ADJUSTMENT VERSION CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - IDENTIFICATION CODE OF MZD FIXED ADJUSTMENT VERSION

4 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

5 - OVERALL AND MOUNTING DIMENSIONS VARIABLE ADJUSTMENT VERSION

6 - OVERALL AND MOUNTING DIMENSIONS FIXED ADJUSTMENT VERSION

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

CONFIGURATIONS (see Hydraulic symbols table)

- " Z4M*-I: pressure reduction on line P drainage connected to line T.
- , Z4M*-A: pressure reduction on line A and full pressure on line B.
- , Z4M*-B: pressure reduction on line B and full pressure on line A.

PERFORMANCES (mea	sured with mineral of	oil of viscosity	36cSt at 50°C)
-------------------	-----------------------	------------------	----------------

Maximum operating pressure	bar	320
Maximum flow rate in the controlled line P Maximum flow rate in the free lines Drainage flow rate	l/min	80 100 0,07
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass:	kg	2,7

Z4M PILOT OPERATED PRESSURE REDUCING VALVE SERIES 50

MODULAR VERSION ISO 4401-05 (CETOP 05)

- p max 320 bar
- **Q** max (see table of performances)

OPERATING PRINCIPLE

- ", The Z4M valve is a piloted pressure reducing valve made as a modular version with mounting surface according to the ISO 4401 (CETOP PR 121H) standards.
- ", It is used to reduce pressure on secondary circuit branches, assuring stability of the controlled pressure and even changing the flow that travels through the valve.
- ", It can be assembled quickly under the ISO 4401-05 (CETOP 05) directional solenoid valves without use of pipes.
- ", It is normally supplied with a countersunk hex adjustment screw, locking nut and maximum adjustment travel limiting device.
- " It is available in four different pressure adjustment ranges up to 320 bar.

HYDRAULIC SYMBOLS

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com · e-mail: sales.exp@duplomatic.com

CONFIGURATIONS (see Hydraulic symbols table)

" Configuration •PZM7-PŽ: pressure reduction on line P - external drainage.

" Configuration • PZM7-PAŽ: pressure reduction on line A and valve on line P.

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

Maximum operating pressure	bar	350
Maximum flow rate	l/min	250
Drainage flow rate	l/min	0,8
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	Secondo ISO 4406:1	999 classe 20/18/15
Recommended viscosity	cSt	25
Mass:	kg	8,65

PZM7 PRESSURE REDUCING VALVE SERIES 10

MODULAR VERSION ISO 4401-07 (CETOP 07)

p max 350 barQ max 250 l/min

OPERATING PRINCIPLE

- ", The PZM7 valve is made as a modular valve and has a mounting surface according to the ISO 4401 (CETOP RP 121H) standards.
- ", It is a two-stage type and is used to assure stability of the controlled pressure, even changing the flow that travels through the valve.
- ", The PZM7M valve can be assembled quickly under the DSP7 directional valves (see catalogue 41 420) without use of pipes, using suitable tie-rods or bolts, forming compact modular groups.

... It is normally supplied with an adjustment knob.

HYDRAULIC SYMBOLS

T1 ⇒ T

Q [l/min]

1 - IDENTIFICATION CODE 10 / Ζ Μ 7 Ι S = adjustment screw (standard) Pressure reducing K = adjustment knob valve Seals: N=seals in NBR for mineral oils (standard) Modular version V = seals in FPM for special fluids ISO 4401-07 (CETOP 07) size Series No. (the overall and mounting dimensions remain unchanged from 10 to 19) **P** = Pressure reduction on line P - external drainage Pressure adjustment range: PA = Pressure reduction on line A and valve on line P $3 = 15 \div 100$ bar (18 rpm) $5 = 15 \div 250$ bar (45 rpm) 2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C) REGULATION PRESSURE DROPS Δp - Q p[bar] ∆p[bar] 300 30 P1⇔ T PZM7-*5 200 20 A1⇔ A B1⇔ B

3 - HYDRAULIC FLUIDS

50

100

100

0

0

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

PZM7-*3

250 Q [l/min]

Minumum regulated pressure

10

0

0

50

100

150

200

250

4 - OVERALL AND MOUNTING DIMENSIONS

150

200

DUPLOMATIC OLEODINAMICA

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

Maximum operating pressure maximum pressure on port T	bar	350 10
Maximum flow rate in the controlled lines Maximum flow rate in the free lines	l/min	50 75
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass:	kg	1,4

MSD DIRECT OPERATED SEQUENCE VALVE SERIES 50

MODULAR VERSION ISO 4401-03 (CETOP 03)

p max 350 bar

Q max (see table of performances)

OPERATING PRINCIPLE

", The MSD valve is a direct operated sequence valve of the spool type and is used to control two or more actuators in succession.

At rest position, it is normally closed and the spool is subject to pressure in line P1 on one side and to the adjustment screw on the other side. When the pressure in line P1 reaches the set value of the screw, the valve opens and allows passage of the fluid in the pressure line of the main circuit.

The valve stays open until the pressure in the circuit drops below the calibrated value set by the spring.

- " It is made as a modular version with ports according to the ISO 4401 (CETOP PR 121H) standards and can be assembled quickly without the use of pipes under the ISO 4401-03 (CETOP 03) directional solenoid valves.
- " It is normally supplied with a hexagonal head adjustment screw. Upon request, it can be equipped with a SICBLOC adjustment knob with micrometric indication and automatic locking.

HYDRAULIC SYMBOLS

63 200/110 ED

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

63 300/110 ED

MOUNTING INTERFACE

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

		,
Maximum operating pressure maximum pressure on port T	bar	320 10
Maximum flow rate in the controlled lines Maximum flow rate in the free lines	l/min	80 100
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/1	
Recommended viscosity	cSt	25
Mass:	kg	2,7

SD4M DIRECT OPERATED SEQUENCE VALVE SERIES 50

MODULAR VERSION ISO 4401-05 (CETOP 05)

p max 320 bar

Q max (see table of performances)

OPERATING PRINCIPLE

", The SD4M valve is a direct operated sequence valve of the spool type, made as a modular version with a mounting surface according to the ISO 4401 (CETOP RP 121H) standards.

It is normally used to drive two or more actuators in succession. In the rest position, it is normally closed and, on one side, the spool is subjected to the push of a small piston on which the line (P1) pressure acts and, on the other side, to the adjustment spring. When the pressure in line P1 reaches the calibrated value of the spring, the valve opens and allows passage of the fluid in the controlled line (P). The valve stays open until the pressure in the circuit drops below the set calibration value.

- " Made in two versions, with internal or external piloting. The piloting port •XŽ is according to the CETOP 4.2-4-R05 mounting interface for the latter version.
- ", It can be assembled quickly without use of pipes under the ISO 4401-05 (CETOP 05) directional solenoid valves.
- , It is normally supplied with a countersunk hex adjustment screw, locking nut and maximum adjustment travel limiting device.

HYDRAULIC SYMBOLS

63 300/110 ED

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

APPLICATION EXAMPLES

Two-way compensator with fixed adjustment, combined with a proportional valve type DSE3-A*

PERFORMANCES (working with mineral oil of viscosity of 36 cSt at 50°C)

Max operating pressure	bar	350
Characteristic p: fixed adjustment variable adjustment	bar	4 - 8 7 ÷ 33
Max flow rate	l/min	40
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass	kg	1,5

PCM3

TWO AND THREE-WAY PRESSURE COMPENSATOR WITH FIXED OR VARIABLE ADJUSTMENT SERIES 10

MODULAR VERSION ISO 4401-03 (CETOP 03)

p max 350 bar

Q max 40 l/min

OPERATING PRINCIPLE

- ", The PCM3 valve is a two or three-way pressure compensator, developed as a modular version with mounting surface according to the ISO 4401 (CETOP RP121H).
- ", Its aim is to keep the pressure drop setting (characteristic p) between the line P and alternatively the lines A and B, at a constant level.
- ", It is normally used together with proportional directional valves, in order to control the flow rate independently of the pressure variations.
- ", The selection of the piloting pressure on the lines A and B is carried out automatically via a shuttle check valve built into the compensator.
- ", The setting of the variable adjustment compensator (characteristic p) can be varied from 7 to 33 bar, via a countersunk hex adjustment screw or via an adjustment knob.
- "The fixed adjustment compensator is available with setting (characteristic p) of 4 and 8 bar.

HYDRAULIC SYMBOLS

1.1 - Two-way compensator identification code

1.2 - Three-way compensator identification code

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

2.1 - Two-way compensator characteristic curves

FLOW RATE - PRESSURE Q = f (p)

PRESSURE DROPS p = f(Q)

2.2 - Three-way compensator characteristic curves

FLOW RATE - PRESSURE Q = f (p)

PRESSURE DROPS p = f (Q)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. With this kind of fluids, use NBR seals type. With fluids HFDR type (phosphate esters) use FPM seals (code V).

Using other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid itself and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

APPLICATION EXAMPLES

2-way compensator combined with a proportional valve type DSE5-A*

PERFORMANCES (working with mineral oil of viscosity of 36 cSt at 50°C)

Max operating pressure	bar	320
Characteristic p	bar	4 - 8
Max flow rate	l/min	100
Ambient temperature range	°C	-20 / +60
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass	kg	2,7

PCM5

TWO- AND THREE-WAY PRESSURE COMPENSATOR WITH FIXED ADJUSTMENT

SERIES 11

MODULAR VERSION ISO 4401-05 (CETOP 05)

p max 320 barQ max 100 l/min

OPERATING PRINCIPLE

- ", The PCM5 valve is a two- or three- way pressure compensator, designed as a modular version with mounting surface according to ISO 4401-05 (CETOP RP121H).
- ", It keeps the pressure drop setting (characteristic p) between the line P and alternatively the lines A and B at a constant level.
- ", It is used together with proportional directional valves, in order to control the flow rate independently of the pressure variations.
- " The selection of the piloting pressure on the lines A and B is carried out automatically via a shuttle check valve built into the compensator.

HYDRAULIC SYMBOL

2 - CHARACTERISTIC CURVES PCM5-P* (2-way) (values obtained with viscosity of 36 cSt at 50°C)

4 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

5 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

63 320/114 ED

APPLICATION EXAMPLES

Two-way compensator with "xed adjustment and internal piloting, combined with a proportional valve type E5E-S9*/E

PERFORMANCES (with mineral oil of viscosity of 36 cSt a 50°C)

Max operating pressure	bar	320
Characteristic p:	bar	4 - 8
Max flow rate	l/min	300
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass	kg	13,5

PCM8

TWO- AND THREE-WAY PRESSURE COMPENSATOR WITH FIXED ADJUSTMENT

SERIES 10

MODULAR VERSION ISO 4401-08 (CETOP 08)

p max 320 bar

Q max 300 l/min

OPERATING PRINCIPLE

- " The PCM8 valve is a two or three-way pressure compensator, developed as a modular version with mounting surface according to ISO 4401 (CETOP RP 121H).
- " Its function is to keep the pressure drop setting (characteristic p) between the line P and alternatively the lines A and B at a constant level.
- " It is normally used together with proportional directional valves, in order to control the "ow rate independently of the pressure variations.
- " The selection of the piloting pressure on the lines A and B is carried out automatically via a shuttle check valve built into the compensator.
 - " They are available with "xed adjustment (characteristic p) of 4 and 8 bar.
 - " The load sensing port can also be used as pressure gauge port or as remote pressure control.

63 520/110 ED

1.1 - Two-way compensator identification code

1.2 - Three-way compensator identification code

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

2.1 - Two-way compensator characteristic curves

2.2 - Three-way compensator characteristic curves

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - PILOTING AND DRAINAGE

The PCM8 compensators are available with the X piloting line both internal and external. The internal piloting line is withdrawn from the P1 line, upstream the narrowing of the compensator, while the external piloting line comes form a separate piloting circuit. Drainage is always external (passing line Y).

The combined directional valve must always have an external piloting con"guration. Drainage can be both internal and external.

	VALVE TYPE	X plug
PCM8-P*/IE	INTERNAL PILOTING AND EXTERNAL DRAINAGE	NO
PCM8-P*/EE	INTERNAL PILOTING AND EXTERNAL DRAINAGE	YES

5 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

64 100/112 ED

MOUNTING SURFACE

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

		-
Maximum operating pressure	bar	320
Maximum flow rate	l/min	30
Ambient temperature range	°C	-20 / +50
Check valve opening pressure	bar	0,4
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass	kg	0,8

QTM2 FLOW RESTRICTOR VALVE SERIES 10

MODULAR VERSION ISO 4401-02 (CETOP R02)

p max 320 barQ max 30 l/min

OPERATING PRINCIPLE

- ", The QTM2 valve is a flow restrictor valve with built in check valve for reverse free flow, made as a modular version with mounting surface according to the ISO 4401 (CETOP RP 12H) standards.
- " It can be assembled with all ISO 4401-02 (CETOP R02) modular valves without use of pipes, using suitable tie-rods or bolts.
- " It is supplied with countersunk hex adjustment screw and locking nut. Rotate anticlockwise to increase the flow rate.

HYDRAULIC SYMBOLS

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

Typical p - Q curves obltained with QTM2-D valve, with throttling axis at full retraction.

- 1) pressure drops A₁ A (B₁ B)
- 2) pressure drops A A₁ (B B₁)
- 3) pressure drops through the free ports

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24

Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

CONFIGURATIONS (see hydraulic symbols table)

" •SAŽ: control of the flow exiting from the actuator on line A .

"•SBŽ: control of the flow exiting from the actuator on line B.

" •DŽ: Allows an indipendent flow control exiting from the two chambers of the actuator. (Standard)

" •RDŽ: Allows an indipendent flow control entering in the two chambers of the actuator.

" •G*Ž: Reversible valve. See at par. 1

PERFORMANCES (measured with mineral oil of viscosity 36 cSt at 50°C)

Maximum operating pressure Check valve cracking pressure	bar	350 0,5
Maximum flow rate in the controlled lines Maximum flow rate in the free lines Min. controlled flowrate with p 10 bar	l/min	50 75 0,060
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO	4406:1999 class 20/18/15
Recommended viscosity	cSt	25
Mass	kg	1,3

MERS FLOW RESTRICTOR VALVE SERIES 50

MODULAR VERSION ISO 4401-03 (CETOP 03)

p max 350 barQ max (see table of performances)

OPERATING PRINCIPLE

- " This is a non-compensated flow control valve with a check valve for reverse free flow. It is made in the modular version and with mounting surface according to the ISO 4401 (CETOP RP 121 H) standards; it can be assembled quickly without use of pipes, but using only suitable tierods or bolts, thus forming compact modular groups.
- ", It is also available as a reversible valve (G* versions). Meter-in or meter-out control depending on the way of assembly the valve on the OR subplate.
- " All the configurations have an incorporated check valve that allows reverse free flow (cracking pressure of 0,5 bar).
- " It is normally supplied with a hexagonal head adjustment screw.

HYDRAULIC SYMBOLS

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS MERS -D, -RD and -S*

MERS SERIES 50

64 310/110 ED

MOUNTING INTERFACE

QTM5 FLOW RESTRICTOR VALVE SERIES 10

MODULAR VERSION ISO 4401-05 (CETOP 05)

p max 350 barQ max 120 l/min

OPERATING PRINCIPLE

- ", This is a flow restrictor valve with built in check valve for reverse free flow, made as a modular version with mounting surface according to the ISO 4401 (CETOP RP 12H) standards.
- " It can be assembled quickly under all ISO 4401-05 (CETOP 05) modular valves without use of pipes, using suitable tie-rods or bolts, thus forming compact modular groups.
- " It is supplied with countersunk hex adjustment screw and locking nut. Rotate anticlockwise to increase the flow rate.

QTI	M5-SA T	A B	QTM5- P T	A B
QTI P	M5-SB T	A B	QTM5- P T	A B
QTI P 1	M5-D	A B	QTM5- P T	

HYDRAULIC SYMBOLS

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

Maximum operating pressure	bar	350
Maximum flow rate	l/min	120
Cracking pressure	bar	0,5
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Recommended viscosity	cSt	25
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Mass: QTM5-SA, -SB, -RSA, -RSB QTM5-D, -RD	kg	2,3 2,5

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

CONFIGURATIONS (see hydraulic symbols table)

- " Configuration •SAŽ: Allows the flow control exiting from the actuator on line A.
- " Configuration •DŽ: Allows independent control of the flow exiting from the chambers A and B of the actuator.
- " All the configurations have a built-in check valve that allows free reverse flow (cracking pressure of 0,7 bar).

PERFORMANCES	(measured with mineral oil of viscosit	y 36cSt at 50°C)
--------------	--	------------------

Maximum operating pressure	bar	350
Maximum flow rate	l/min	250
Leakage flow with restrictor closed	l/min	0,5
Check valve opening pressure	bar	0,7
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass: QTM7-SA QTM7-D	kg	7,35 7,7

QTM7 FLOW RESTRICTOR VALVE SERIES 10

MODULAR VERSION ISO 4401-07 (CETOP 07)

p max 350 bar
Q max 250 l/min

OPERATING PRINCIPLE

- ", This is a flow restrictor valve with built in check valve for reverse free flow, made as a modular version with mounting surface according to the ISO 4401 (CETOP RP 12H) standards.
- " It can be assembled quickly under all ISO 4401-07 (CETOP 07) modular valves without use of pipes, using suitable tie-rods or bolts, thus forming compact modular groups.
- " It is supplied with countersunk hex adjustment screw and locking nut. Rotate anticlockwise to increase the flow rate.

HYDRAULIC SYMBOLS

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

64 410/112 ED

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

Tel. +39 0331.895.111 Fax +39 0331.895.339

65 100/112 ED

MOUNTING SURFACE

PERFORMANCE RATINGS (measured with mineral oil of viscosity 36 cSt at 50°C)

Maximum operating pressure	bar	320
Maximum flow rate	l/min	30
Ratio between pressure of the sealed chamber and the piloting pressure		3.5:1
Opening pressure	bar	2
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass	kg	0.75

CHM2 PILOT OPERATED CHECK VALVE SERIES 10

MODULAR VERSION ISO 4401-02 (CETOP R02)

p max 320 bar
Q max 30 l/min

OPERATING PRINCIPLE

", The CHM2 valve is a hydraulically released check valve with spring closing and with cone on edge seals; the mounting surface is according to the ISO 4401 (CETOP RP 121H) standards.

" Its use allows:

- prevention of flow in one direction;
- flow in the same direction, if opened by a pilot pressure;
- free flow in the other direction.
- ", The CHM2 valves are always mounted downstream of the DL2 type directional solenoid valves (see cat. 41 100) and can be assembled with all other ISO 4401-02 (CETOP R02) valves.

HYDRAULIC SYMBOLS

2 - CHARACTERISTIC CURVES

4 - OVERALL AND MOUNTING DIMENSIONS

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. With this kind of fluids, use NBR seals type (code N). With HFDR fluids type (phosphate esters) use FPM seals (code V).

For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid itself and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

65 200/111 ED

MOUNTING INTERFACE

CONFIGURATIONS (see Hydraulic symbols table)

- " MVR-SP: check valve on line P.
- " MVR-SA: check valve on line A..
- " MVR-ST: check valve on line T.

PERFORMANCES	(measured with mineral oil of	viscosity 36cSt at 50°C)
--------------	-------------------------------	--------------------------

Maximum operating pressure Check valve cracking pressure	bar	350 3 - 0,5 - 5
Maximum flow rate in controlled lines Maximum flow rate in the free lines	l/min	50 75
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass:	kg	1

MVR DIRECT CHECK VALVE SERIES 51

MODULAR VERSION ISO 4401-03 (CETOP 03)

- p max 350 bar
- **Q** max (see table of performances)

OPERATING PRINCIPLE

- ", The MVR valve is a direct check valve made as a modular version with mounting surface according to the ISO 4401 (CETOP RP 121H) standards.
- " It is used to avoid oil backflows and self-emptying of lines, or to generate back-pressures.
- ", It can be assembled quickly under the ISO 4401-03 (CETOP 03) directional solenoid valves without the use of pipes, using suitable tie-rods or bolts.
- " It is available in versions with the check valve only on single line (P, T, A or B) or on both lines (P and T or A and B).
- " MVR-SB: check valve on line B.
- " MVR-SPT: check valve on lines P and T.
- " MVR-D: check valve on lines A and B.

HYDRAULIC SYMBOLS

65 200/111 ED

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

Maximum operating pressure Check valve cracking pressure	bar	350 1
Maximum flow rate in controlled lines Maximum flow rate in the free lines	l/min	50 75
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass:	kg	1,1

MVR-RS/P DIRECT CHECK VALVE WITH FLOW RESTRICTOR SERIES 50

MODULAR VERSION ISO 4401-03 (CETOP 03)

- p max 350 bar
- **Q** max (see table of performances)

OPERATING PRINCIPLE

- " The MVR-RS/P valve is a check valve that incorporates also the function of flow restriction.
- " It is made as a modular version with mounting surface according to the ISO 4401 (CETOP RP 121H) standards.
- " It can be quickly assembled under the ISO 4401-03 (CETOP 03) directional solenoid valves and modular valves, without use of pipes and using suitable tie-rods or bolts.
- ", It is used when it is necessary to control the flow in a direction and to avoid backflows or the self-emptying of the lines in the opposite direction.
- " Control of the flow is obtained with a countersunk hex screw with locking nut.

HYDRAULIC SYMBOL

MVR-RS/P SERIES 50

1 - IDENTIFICATION CODE

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

65 210/110 ED

CONFIGURATIONS (see hydraulic symbols table)

- Configurations "SA" "SB": are used to lock the actuator in one direction.
- Configuration "D": is used to lock the position of the actuator in both directions.

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

Maximum operating pressure Check valve cracking pressure	bar	350 3
Maximum flow rate in controlled lines Maximum flow rate in the free lines	l/min	50 75
Ratio between the pressure in the locked chambers and the piloting pressure		3,4:1
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass:	kg	1,3

HYDRAULIC SYMBOLS

MVPP PILOT OPERATED CHECK VALVE SERIES 50

MODULAR VERSION

ISO 4401-03 (CETOP 03)

p max 350 bar

Q max (see table of performances)

OPERATING PRINCIPLE

- prevention of flow one-way;

- flow in one-way, if opened by a pilot pressure;
- free flow in the other way.
- The MVPP are always mounted under the ISO 4401-03 (CETOP 03) directional solenoid valves and can be assembled with all other ISO 4401-03 (CETOP 03) valves.

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

65 300/110 ED

MOUNTING INTERFACE

CONFIGURATIONS (see Hydraulic symbols table)

- " VR4M-SP: check valve on line P.
- " VR4M-ST: check valve on line T.

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

Maximum operating pressure Check valve cracking pressure	bar bar	320 0,5 - 8
Maximum flow rate in the controlled lines and in the free lines	l/min	100
Ambient temperature range	°C	20 / +50
Fluid temperature range	°C	20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Recommended viscosity	cSt	25
Degree of fluid contamination	According to ISO 4406:1999 class 20/18/15	
Mass	kg	2,3

VR4M DIRECT CHECK VALVE SERIES 50

MODULAR VERSION ISO 4401-05 (CETOP 05)

p max 320 barQ max 100 l/min

OPERATING PRINCIPLE

- ", The VR4M valve is a check valve made as a modular version with mounting surface according to the ISO 4401 (CETOP RP 121H) standards.
- " It is used to avoid oil backflows and self-emptying of lines, or to generate backpressures.
- ", It can be assembled quickly under the ISO 4401-05 (CETOP 05) directional solenoid valves without use of pipes, using suitable tie-rods or bolts.
- " It is available in two versions with check valve on line P or T.

HYDRAULIC SYMBOLS

1 - IDENTIFICATION CODE 50 Μ R / 4 Check valve Seals: omit for mineral oils V = viton for special fluids ISO 4401-05 (CETOP 05) size Series No. (the overall and mounting dimensions remain unchanged from 50 to 59) Modular version SP = check valve on line P Cracking pressure: ST = check valve on line T 1 = 0,5 bar4 = 8 bar

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

1) pressure drops $P_1 P$ and $T T_1$ (controlled lines)

2) pressure drops on free lines (ex. A A 1)

NOTE: Add the valve cracking pressure to the values shown by the curve 1 of the diagram

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

CHM5 PILOT OPERATED CHECK VALVE SERIES 10

MODULAR VERSION ISO 4401-05 (CETOP 05)

p max 320 barQ max 120 l/min

OPERATING PRINCIPLE

- " This is a pilot operated check valve (spring closing and cone on edge seals) with a built-in flow control feature. The mounting surface is according to the ISO 4401 (CETOP RP 121H) standard.
- ", The CHM5 are always mounted under the ISO 4401-05 (CETOP 05) directional solenoid valves and can be assembled with all other ISO 4401-05 (CETOP 05) valves.
- ", The pre-opening feature of the valve causes the decompression of the cylinder chamber, leading to a smooth motion.

Maximum operating pressure	bar	320	
Maximum flow rate	l/min	120	
Decompression ratio	14,9:1		
Piloting ratio	2,3:1		
Check valve cracking pressure	bar	2	
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Recommended viscosity	cSt	25	
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Mass: CHM5-D CHM5-SA e CHM5-SB	kg	2,2 1,9	

HYDRAULIC SYMBOLS

65 360/110 ED

4 - OVERALL AND MOUNTING DIMENSIONS

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V).

For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

65 410/110 ED

MOUNTING INTERFACE

CONFIGURATIONS (see hydraulic symbols table)

- Configuration "SA" - "SB": is used to lock the actuator in one direction.

- Configuration "D": is used to lock the actuator position in both directions.

The opening of the valve is gradual and occurs with the pre-opening of the main shutter that permits the plant decompression .

PERFORMANCE RATINGS (measured with mineral oil of viscosity 36cSt at 50°C)

Maximum operating pressure	bar	350
Maximum flow rate	l/min	300
Ratio between pressure of the sealed chamber and the piloting pressure		13:1
Opening pressure	bar	2
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass: CHM7-S* CHM7-D	kg	7,6 7,7

HYDRAULIC SYMBOLS

CHM7 **PILOT OPERATED CHECK VALVE SERIES 11**

MODULAR VERSION ISO 4401-07 (CETOP 07)

p max 350 bar

Q max 300 l/min

OPERATING PRINCIPLE

- closing and with cone on edge seals; the mounting surface is according to the ISO 4401 (CETOP RP 121H) standards.
- Its use allows:
 - prevention of flow in one direction;
 - flow in the same direction, if opened by a pilot pressure;
 - free flow in the other direction.
- The CHM7 valves are always mounted downstream of the DSP7 type directional solenoid valves (see cat. 41 420) and can be assembled with all other ISO 4401-07 (CETOP 07) valves.

2 - CHARACTERISTIC CURVES

(values obtained with viscosity of 36 cSt at 50°C)

4 - OVERALL AND MOUNTING DIMENSIONS

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. With this kind of fluids, use NBR seals type (code N). With HFDRfluids type (phosphate esters) use FPM seals (code V).

For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid itself and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24

Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

CONFIGURATIONS

(see Hydraulic symbols table and Identification Code - par. 1)

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

Maximum operating pressure	bar	250
Maximum flow rate in controlled lines Maximum flow rate in the free lines Reverse free flow maximum flowrate	l/min	1-4-10-16-22-30 65 40
Ambient temperature range	°C	-20 / +50
Fluid temperature range	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15	
Recommended viscosity	cSt	25
Mass: RPC1-*/M/ A-B-T-P RPC1-*/M/ D RPC1-*/M/PCT3 only modular block ISO 4401-03 without flow control valves: RPC1-K/M/* RPC1-K/M/PCT3	kg	3 4,1 3,7 1,5 2,4

RPC1*/M FLOW CONTROL VALVE SERIES 10

MODULAR VERSION ISO 4401-03 (CETOP 03)

- p max 250 bar
- Q max (see table of performances)

OPERATING PRINCIPLE

- ", The RPC1*/M valve is a flow control valve with pressure and temperature compensation, made as a modular version with mounting surface according to the ISO 4401 (CETOP RP 121H) standards.
- ", It can be assembled quickly under theISO 4401-03 (CETOP 03) directional solenoid valves and allows easy execution of hydraulic circuits where control of the speed of the actuators is required.
- " It is available in six flow adjustment ranges up to 30 l/min.
- ", Combined with MDD44 type solenoid operated directional control valves (see cat. 41 250), ites possible to obtain circuits for the fast/slow control of the work actuators.

NOTE: for detailed information regarding the RPC1 flow control valve, see catalogue 32 200

HYDRAULIC SYMBOLS

RPC1*/M SERIES 10

1 - IDENTIFICATION CODE

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.
RPC1*/M SERIES 10

4 - OVERALL AND MOUNTING DIMENSIONS RPC1-*/M VALVES

RPC1*/M SERIES 10

5 - OVERALL AND MOUNTING DIMENSIONS OF BLOCKS WITHOUT FLOW CONTROL VALVE

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com

MOUNTING SURFACE

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

	-			
Maximum operating pressure	bar	250		
Maximum flow rate in controlled lines Maximum flow rate in the free lines	l/min	1 - 4 - 10 - 16 - 22 - 30 65		
Minimum controlled flow rate	l/min	0,025		
Ambient temperature range	°C	-20 / +50		
Fluid temperature range	°C	-20 / +80		
Fluid viscosity range	cSt	10 ÷ 400		
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15			
Recommended viscosity	cSt	25		
Mass	kg	3,1		

RLM3 ELECTRIC FAST / SLOW SPEED SELECTION VALVE SERIES 10

MODULAR VERSION ISO 4401-03 (CETOP 03)

- p max 250 bar
- Q max (see table of performances)

OPERATING PRINCIPLE

- " The RLM3 valve is a compact group that allows control of the fast/slow flow through use of an open/close solenoid valve. The adjustment of the flow is carried out with the RPC1 compensated flow control valves (see catalogue 32 200) with six adjustment ranges.
- " The fast/slow speed selection is obtained with the KT08 solenoid cartdrige poppet valve (see catalogue 43100)
- " Made as a modular version, the mounting surface is according to iso 4401 (CETOP RP121H) standards.
- ", The RLM3 valve can be assembled quickly under the ISO 4401-03 (CETOP 03) directional solenoid valves without use of pipes, permitting the construction of directional and

speed controls for work actuators in a single mounting position.

CONFIGURATIONS

(see Hydraulic symbols)

- ", Configuration •AŽ: meter-out control from the actuator on chamber A.
- ", Configuration •TŽ: control on discharge T of the directional solenoid valve for speed control in both directions of movement.

1 - IDENTIFICATION CODE

N.B. : For further informations about the flow control valve see catalogue 32 200; For further informations about the cartridge poppet valve see catalogue 43 100.

NOTE: The solenoid valves are never supplied with connector. Connectors must be ordered separately. To find out the type of connector to be ordered, please see catalogue 49 000.

1.1 - Coil identification code

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

RLM3 SERIES 10

3 - HYDRAULIC SYMBOLS

4 - PRESSURE DROPS p-Q

(obtained with viscosity of 36 cSt at 50 °C) ∆р [bar] 30 A1→A $T \rightarrow T1$ 25 20 15 10 5 0 10 20 30 40 50 Q [l/min]

The values in graphs refer to the fast flow through the soleinoid valve and are equal for A (normally open) and C (normally closed) versions.

5 - SWITCHING TIME

The values are obtained according to the ISO 6403 standard, with mineral oil at 50° C, with viscosity of 36 cSt.

TIMES [ms]	ENERGIZING	DE-ENERGIZING
RLM3*-A*	85	60
RLM3*-C*	60	85

6 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions.

The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage.

The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

5 - ELECTRICAL FEATURES

5.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded onto the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation. The coil is fastened to the tube by a threaded nut, and can be rotated according to the available space.

The interchangeability of coils of different voltages both D or R type is possible without removing the tube.

Protection according CEI EN 60529 - atmpspheric agents

Connector	IP 65	IP 67	IP 69 K
K1 DIN 43650	х		
K2 AMP JUNIOR	х	х	
K4 outgoing cables	х	х	
K7 DEUTSCH DT04 male	х	х	х
K8 AMP SUPER SEAL	x	x	x

NOTE: The protection degree is guaranteed only with the connector correctly connected and installed.

VOLTAGE SUPPLY FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	10.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 1)	In compliance with 2004/108/CE
LOW VOLTAGE	In compliance with 2006/95/CE
CLASS OF PROTECTION: Atmospheric agents (CEI EN 60529) Coil insulation (VDE 0580) Impregnation:	IP 65 (NOTE 2) class H class H

5.2 Current and absorbed power

In the table are shown current and power consumption values relevant to the different coil types. •RŽ coil must be used when the valve is fed with AC power supply subsequently rectified by means of rectifier bridge, externally or incorporated in the •DŽ type connector(see cat. 49 000).

	Resistance at	Absorbed	Absorbe	ed power	Coil code				
	20°C	current	(±	5%)					
	[](±1%)	[A] (±5%)	[W]	[VA]	K1	K2	K4	K7	K8
C14L3-D12*	5,4	2,2	26,5		1902740	1902750	1902770	1902980	1903020
C14L3-D24*	20,7	1,16	27,8		1902741	1902751	1902771	1902981	1903021
C14L3-R110*	363	0,25		27,2	1902742				
C14L3-R230*	1640	0,11		26,4	1902743				

8 - MANUAL OVERRIDE

CM for NC version (screw type)

RLM3 SERIES 10

9 - OVERALL AND MOUNTING DIMENSIONS

10 - ELECTRIC CONNECTIONS

connection for DIN 43650 connector code K1 (standard)

outgoing cables connection code K4

connection for AMP JUNIOR connector code K2

connection for DEUTSCH DT04-2P male connector code **K7**

connection for AMP SUPER SEAL connector (two contacts) code K8

11 - ELECTRIC CONNECTORS

The solenoid valves are supplied without connectors. For coils with standard electrical connections K1 type (DIN 43650) the connectors can be ordered separately. For the identification of the connector type to be ordered please see catalog 49 000. For K2, K7 and K8 connection type the relative connectors are not available.

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

MOUNTING INTERFACE

CONFIGURATIONS (see Hydraulic symbols table and Identification Code - par. 1)

Maximum operating pressure	bar	250			
Maximum flow rate in controlled lines Maximum flow rate in the free lines Reverse free flow maximum flowrate	l/min	1-4-10-16-22-30 100 40			
Ambient temperature range	°C	-20 / +50			
Fluid temperature range	°C	-20 / +80			
Fluid viscosity range	cSt 10 ÷ 400				
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15				
Recommended viscosity	cSt	25			
Mass: RPC1*/4M/ A-B RPC1*/4M/ D only modular block ISO 4401-05 without flow control valves: RPC1-K/4M/D	kg	4,3 5,6 3			

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

HYDRAULIC SYMBOLS

RPC1-*/4M FLOW CONTROL VALVE SERIES 10

MODULAR VERSION ISO 4401-05 (CETOP 05)

- p max 250 bar
- **Q** max (see table of performances)

OPERATING PRINCIPLE

- The RPC1-*/4M valve is a flow control valve with pressure and temperature compensation, made as a modular version with mounting surface according to the ISO 4401 (CETOP RP121H) standards.
- It can be assembled quickly under the ISO 4401-05 (CETOP 05) directional solenoid valves and allows easy execution of hydraulic circuits where speed control of the actuators is required.
- It is available in six flow adjustment ranges up to 30 l/min.

NOTE: for detailed information regarding the RPC1 flow control valve, see catalogue 32 200.

66 300/110 ED

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - OVERALL AND MOUNTING DIMENSIONS

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

MOUNTING SURFACE

PERFORMANCES (measured with mineral oil of viscosity 36cSt at 50°C)

Maximum operating pressure	bar	350	
Maximum flow rate thtough the cartridge	l/min	3	
Maximum flow rate to A, B, P and T port	l/min 40		
Ambient temperature range	°C	-20 / +60	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt 10 ÷ 400		
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25	
Mass	kg	0,95	

VSM3 SHUTTLE VALVE SERIES 10

MODULAR VERSION ISO 4401-03 (CETOP 03)

p max 350 barQ max 40 l/min

OPERATING PRINCIPLE

- ", The VSM3 ia a shuttle valve for pilot signals made as a modular version with mounting surface according to the ISO 4401-03 (CETOP RP 12H) standards.
- ", The valve regulates the passage of the signal with higher pressure between A and B towards the outlet side port 1/4Ž BSP.
- " The shuttle valve VSM3 has been designed with purpose of pilot signal with flowrate up to 3 l/min

HYDRAULIC SYMBOL

1 - IDENTIFICATION CODE

2 - CHARACTERISTIC CURVES (values obtained with viscosity of 36 cSt at 50°C)

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

